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Preface i

Preface

Welcome
Welcome to the “System Design with Silicon Lab EFR32XG24 BLE Microcontroller”. This book is
designed to guide you through the process of programming, building applications, and integrating
machine learning with the EFR32XG24 BLE Microcontroller. Whether you’re an engineering student
or a seasoned professional, this book o昀昀ers hands-on examples to make advanced concepts accessible.

You’ll learn how to: - Program the EFR32XG24 microcontroller using C. - Design and implement
embedded systems applications. - Apply machine learning techniques to solve real-world problems.
- Explore gesture recognition, anomaly detection, and audio-based ML solutions.

The book balances theory with practice, empowering readers to develop embedded systems that
are robust, e昀케cient, and intelligent.

If you’re interested in broader programming concepts or other machine learning platforms, we
encourage you to explore additional resources and apply your learning across domains.

This book was originally developed as part of the EE260 and EE513 courses at Clarkson
University. The Quarto-based version serves as an example of modern technical publishing
and open access education.

License
This book is free to use under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. You arewelcome to share, adapt, and use thematerial for educational purposes,
as long as proper attribution is given and no commercial use is made.

If you’d like to support the project or contribute, you can report issues or submit pull requests at
github.com/clarkson-edge/ee513_book. Thank you for helping improve this resource for the com-
munity.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/clarkson-edge/ee513_book
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Chapter 1

Introduction to Embedded Machine Learning

This chapter introduces the essential concepts of embedded machine learning and highlights the
growing signi昀椀cance of TinyML in modern embedded system designs. It emphasizes the role of
microcontrollers, particularly the Silicon Labs EFR32MG24, in enabling e昀케cient, low-power machine
learning inferencing for IoT applications. Whether you are a student starting your embeddedML jour-
ney or an engineer aiming to enhance your system design skills, this textbook will serve as a valuable
resource to build innovative and e昀케cient TinyML-enabled embedded solutions.

1.1 Overview

Embedded machine learning, often referred to as TinyML, represents a paradigm shift in computa-
tional intelligence by bringing sophisticated inferencing capabilities directly to resource-constrained
embedded systems. Unlike traditional machine learning systems that rely on cloud computing or
powerful edge devices, TinyML optimizes models to operate within the strict memory, processing,
and power constraints of microcontrollers. This evolution enables a new class of intelligent devices
that can make real-time decisions locally without requiring constant connectivity to external servers.

At the core of TinyML systems lies themicrocontroller, a compact integrated circuit that combines a
processor, memory, and input/output peripherals on a single chip. Modern microcontrollers like the
Silicon Labs EFR32MG24 are increasingly designedwithMLworkloads inmind, featuring specialized
hardware accelerators and optimized instruction sets that enhance neural network performancewhile
maintaining energy e昀케ciency.

In recent years, the demand for local intelligence in IoTdevices has surged, driven by concerns about
latency, privacy, bandwidth limitations, and power consumption. TinyML addresses these challenges
by enabling machine learning models to run directly on microcontrollers, processing sensor data lo-
cally and making intelligent decisions without transmitting raw data to the cloud. This approach is
particularly valuable for applications such as keyword spotting, gesture recognition, anomaly detec-
tion, and predictive maintenance in industrial settings.

The Silicon Labs EFR32MG24 series is one of the most advanced microcontrollers available for
TinyML applications in 2024. Built on the ARM Cortex-M33 core operating at 78 MHz, it o昀昀ers a
powerful blend of performance and energy e昀케ciency, with a memory footprint of 1536KB 昀氀ash and
256KB RAM. The platform includes an AI/ML hardware accelerator that enhances neural network
execution, making it ideal for deploying sophisticated TinyML models while maintaining battery life
in portable devices.
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This textbook, Embedded Machine Learning Design with Silicon Labs EFR32MG24, provides a compre-
hensive guide for students and engineers to understand and implement TinyML solutions. The book
covers both theoretical foundations and practical implementations, ensuring readers gain a deep un-
derstanding of machine learning optimization for resource-constrained systems.

Throughout this book, readers will learn:
• The fundamentals of TinyML and the computational constraints paradigm
• Model compression and quantization techniques for microcontroller deployment
• Practical implementation using Google Colab for model training and Simplicity Studio for de-

ployment
• Hands-on experience building the canonical “Hello World” of TinyML: a sine wave predictor
• Advanced techniques for power optimization, performance pro昀椀ling, and model e昀케ciency
• Real-world case studies demonstrating TinyML applications across various domains

1.2 Real-World Applications of Embedded Machine Learning
Embedded machine learning is transforming countless devices and technologies by enabling local in-
telligence in resource-constrained environments. TinyML systems execute sophisticated inferencing
tasks e昀케ciently while operating under strict constraints of power consumption, memory limitations,
and processing capabilities. Examples of TinyML applications can be observed across diverse indus-
tries, showcasing the versatility and transformative potential of this technology.

In healthcare and wearables, TinyML enables continuous health monitoring without draining bat-
tery life. Smart watches and 昀椀tness trackers use embedded ML algorithms to detect irregular heart-
beats, analyze sleep patterns, and recognize speci昀椀c activities based on motion sensor data. These
devices perform complex pattern recognition locally, only transmitting alerts or summarized insights
rather than constant streams of raw data, preserving both battery life and user privacy.

Industrial IoT applications leverage TinyML for predictive maintenance and anomaly detection at
the sensor level. Embedded microcontrollers equipped with ML capabilities can analyze vibration
patterns from motors or machinery, detecting subtle changes that might indicate impending failure
before catastrophic breakdowns occur. By processing this data directly on the device, these systems
can operate in environments with limited connectivity while providing real-time insights.

Consumer electronics increasingly incorporate TinyML to enhance user experience through always-
on, low-power intelligence. Voice assistants use keyword spotting models running on microcon-
trollers to detect wake words without sending all audio to the cloud. Smart home sensors employML
algorithms to di昀昀erentiate between routine movements and security concerns, reducing false alarms
while improving response times to genuine threats.

Agricultural and environmental monitoring systems utilize TinyML to enable intelligent, au-
tonomous operation in remote locations. Soil moisture sensors can incorporate local ML models to
optimize irrigation schedules based on weather patterns, soil conditions, and crop-speci昀椀c needs.
Wildlife tracking devices use embedded ML to classify animal behaviors directly on the device,
extending battery life from days to months by eliminating continuous data transmission.

The EFR32MG24microcontroller is particularly well-suited for these applications due to its balance
of processing power, memory resources, and energy e昀케ciency. Its ARM Cortex-M33 core provides
su昀케cient computational capabilities for running inference on neural networks, while its power man-
agement features enable long-term operation on battery power. The integrated ML accelerator fur-
ther enhances performance for speci昀椀c machine learning workloads, enabling more complex models
to run e昀케ciently.
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1.3 The EFR32MG24 for Machine Learning Applications
The EFR32MG24 microcontroller, part of Silicon Labs’ Wireless Gecko series, is speci昀椀cally designed
to address the growing demand for local machine learning capabilities in resource-constrained em-
bedded systems. Built on the ARM Cortex-M33 core, it operates at a maximum frequency of 78 MHz,
delivering su昀케cient computational power for real-time ML inferencing while maintaining energy ef-
昀椀ciency. With 1536KB of 昀氀ash memory and 256KB of RAM, it provides adequate storage for both
program code and machine learning models after quantization and optimization.

A key feature that distinguishes the EFR32MG24 for ML applications is its dedicated AI/ML hard-
ware accelerator, which enhances the execution of speci昀椀c neural network operations. This accelera-
tor enables more e昀케cient matrix multiplications and other common ML computations, allowing for
faster inference times and lower power consumption compared to software-only implementations.
Combined with the DSP extensions in the Cortex-M33 architecture, this hardware support makes the
EFR32MG24 an excellent platform for deploying sophisticated TinyML models.

The EFR32MG24 excels in power management, o昀昀ering multiple low-power modes that are essen-
tial for battery-operatedML devices. Its EnergyManagement Unit (EMU) allows 昀椀ne-grained control
over active, sleep, and deep sleep states, enabling systems to run inferencing only when needed and
remain in ultra-low-power states otherwise. This capability is critical for applications like smart sen-
sors that may need to periodically analyze data but remain dormant most of the time.

For data acquisition and sensor integration, the EFR32MG24 provides comprehensive peripheral
support, including high-precision ADCs, DACs, and various communication interfaces (UART, SPI,
I2C). These peripherals enable the connection of diverse sensors for gathering the input data required
by ML models. The microcontroller’s wireless capabilities, particularly Bluetooth Low Energy (BLE),
allow for convenient model updates, con昀椀guration changes, and the transmission of inference results
when necessary.

Security features are increasingly important inML-enabled devices, and the EFR32MG24 addresses
this through hardware-based security elements including a cryptographic accelerator and secure boot
mechanisms. These features help protect both the intellectual property embedded in the ML models
and any sensitive data processed by the device.

The development environment for the EFR32MG24, centered around Simplicity Studio and the
Gecko SDK, provides integrated support for TinyML work昀氀ows. The SDK includes optimized li-
braries for TensorFlow LiteMicro, enabling straightforward deployment of models trained using pop-
ular frameworks like TensorFlow. This integration streamlines the development process from model
training to on-device deployment, making the platform accessible even to developers new tomachine
learning.

Available in the xG24-DK2601B Development Kit, the EFR32MG24 provides an ideal platform
for learning and experimenting with embedded machine learning concepts, from simple inferenc-
ing tasks like our sine wave predictor to more complex applications such as sensor fusion, anomaly
detection, and pattern recognition. Throughout this book, we will use this powerful yet resource-
constrained platform to demonstrate the principles and practices of e昀케cient TinyML implementation.
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Chapter 2

The Art and Science of Machine Learning

Learning lies at the heart of intelligence, whether natural or arti昀椀cial. In this chapter, we will em-
bark on a fascinating exploration of the fundamental principles that enable machines to learn from
experience. Together, we will examine both the theoretical foundations that provide a rigorous math-
ematical basis for machine learning, as well as the practical considerations that shape the design and
implementation of modern learning systems. Our journey will take us from the historical roots of
the 昀椀eld through to the cutting-edge research de昀椀ning the current state of the art and the open chal-
lenges guiding future directions. By the end of this chapter, you will have built a comprehensive
understanding of how machines can acquire, represent, and apply knowledge to solve complex prob-
lems and enhance decision-making across a wide range of domains.

To make our exploration as engaging and accessible as possible, I will aim to break down complex
ideas into more easily digestible parts, building up gradually to the more advanced concepts. Along
the way, I will make use of intuitive analogies, illustrative examples, and step-by-step explanations to
help illuminate key points. Please feel free to ask questions or share your own insights at any point -
learning is an interactive process and your contributions will only enrich our discussion!

With that in mind, let’s begin our journey into the art and science of machine learning.

2.1 Origins and Evolution
To fully appreciate the current state and future potential of machine learning, it is helpful to under-
stand its historical context and developmental trajectory. In this section, we will trace the origins of
the 昀椀eld and highlight the pivotal advances that have shaped its evolution.

2.1.1 Historical Context
The dream of creating intelligent machines that can learn and adapt has captivated the human imagi-
nation for centuries. In mythology and folklore around the world, we 昀椀nd stories of animated beings
imbued with ‘arti昀椀cial’ intelligence, from the golems of Jewish legends to the mechanical servants of
ancient China. These ageless visions speak to a deep fascination with the idea of breathing life and
cognizance into inanimate matter.

However, the emergence ofmachine learning as a scienti昀椀c discipline is amore recent development,
tracing its origins to the mid-20th century. In a profound sense, the birth of machine learning as we
know it today arose from the convergence of several key intellectual traditions:

Arti昀椀cial intelligence - The quest to create machines capable of intelligent behavior
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Statistics and probability theory - The mathematical tools for quantifying and reasoning about uncer-
tainty

Optimization and control theory - The principles for automated decision-making and goal-directed
behavior

Neuroscience and cognitive psychology - The scienti昀椀c study of natural learning in biological systems
Each of these tributaries contributed essential ideas and techniques that merged together to form

the foundations of modern machine learning.
Some key milestones in the early history of the 昀椀eld:
• 1943 - Warren McCulloch and Walter Pitts publish “A Logical Calculus of the Ideas Immanent

in Nervous Activity”, laying the groundwork for arti昀椀cial neural networks
• 1950 - Alan Turing proposes the “Turing Test” in his seminal paper “ComputingMachinery and

Intelligence”, providing an operational de昀椀nition of machine intelligence
• 1952 - Arthur Samuelwrites the 昀椀rst computer learning program,which learned to play checkers

better than its creator
• 1957 - Frank Rosenblatt invents the Perceptron, an early prototype of arti昀椀cial neural networks

capable of learning to classify visual patterns
• 1967 - Covering numbers and the Vapnik–Chervonenkis dimension (VC dimension) introduced

in the groundbreaking work of Vladimir Vapnik and Alexey Chervonenkis, providing the foun-
dations for statistical learning theory

These pioneering e昀昀orts laid the conceptual and technical groundwork for the subsequent decades
of research that grew the 昀椀eld into the thriving discipline it is today.

2.1.2 From Rule-Based to Learning Systems
In its early stages, arti昀椀cial intelligence research focused heavily on symbolic logic and deductive
reasoning. The prevailing paradigm was that of “expert systems” - computer programs that encoded
humanknowledge and expertise in the formof explicit logical rules. A canonical examplewasMYCIN,
a program developed at Stanford University in the early 1970s to assist doctors in diagnosing and
treating blood infections. MYCIN’s knowledge base contained hundreds of IF-THEN rules obtained
by interviewing expert physicians, such as:

IF (organism-1 is gram-positive) AND
(morphology of organism-1 is coccus) AND
(growth-conformation of organism-1 is chains)

THEN there is suggestive evidence (0.7) that
the identity of organism-1 is streptococcus

By chaining together inferences based on these rules, MYCIN could arrive at diagnostic conclusions
and treatment recommendations that rivaled those of human specialists in its domain.

However, the handcrafted knowledge-engineering approach of early expert systems soon ran into
serious limitations:

• Knowledge acquisition bottleneck: Extracting and codifying expert knowledge proved to be
extremely time-consuming and prone to inconsistencies and biases.

• Brittleness and in昀氀exibility: Rule-based systems struggled to handle noisy data, adapt to novel
situations, or keep up with changing knowledge.

• Opaque “black box” reasoning: The complex chains of inference generated by expert systems
were often di昀케cult for humans to inspect, understand, and debug.
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• Inability to learn from experience: Once programmed, rule-based systems remained static and
could not automatically improve their performance or acquire new knowledge.

These shortcomings highlighted the need for a fundamentally di昀昀erent approach - one that could
overcome the rigidity and opacity of handcrafted symbolical rules and instead acquire knowledge
directly from data.

2.1.3 The Statistical Revolution
The critical shift from rule-based to learning systems was catalyzed by two key insights: Many real-
world domains are intrinsically uncertain and subject to noise, necessitating a probabilistic treatment.
Expertise is often implicit and intuitive rather than explicit and axiomatic, making it more amenable
to statistical extraction than symbolic codi昀椀cation.

Consider again the task of medical diagnosis that systems like MYCIN sought to automate. While
it is possible to elicit a set of logical rules from a human expert, there are several complicating factors:

• Patients present with constellations of symptoms that are imperfectly correlated with underly-
ing disorders.

• Diagnostic tests yield results with varying levels of accuracy and associated error rates.
• Diseases evolve over time, manifesting di昀昀erently at di昀昀erent stages.
• Treatments have uncertain e昀昀ects that depend on individual patient characteristics.
• New diseases emerge and existing ones change in their prevalence and manifestation over time.

In such an environment, de昀椀nitive logical rules are the exception rather than the norm. Instead,
diagnosis is fundamentally a process of probabilistic reasoning under uncertainty, based on a
combination of empirical observations and prior knowledge.

The key innovation that unlockedmachine learningwas to reframe the challenge in statistical terms:
• Instead of trying to manually encode deterministic rules, the goal became to automatically infer

probabilistic relationships from observational data.
• Rather than requiring knowledge to be explicitly enumerated, learning algorithms aimed to

implicitly extract latent patterns and regularities.
• In place of brittle logical chains, models learned robust statistical associations that could grace-

fully handle noise and uncertainty.

This shift in perspective opened up a powerful new toolbox of techniques at the intersection of
probability theory and optimization. Some key formal developments:

• Maximum likelihood estimation (Ronald Fisher, 1920s): A principled framework for inferring
the parameters of statistical models from observed data.

• The perceptron (Frank Rosenblatt, 1957): A simple type of arti昀椀cial neural network capable of
learning to classify linearly separable patterns.

• Stochastic gradient descent (Herbert Robbins & Sutton Monro, 1951): An e昀케cient optimization
procedure well-suited to large-scale machine learning problems.

• Backpropagation (multiple independent discoveries, 1970s-1980s): An algorithm for training
multi-layer neural networks by propagating errors backwards through the network.

• The VC dimension (Vladimir Vapnik & Alexey Chervonenkis, 1960s-1970s): A measure of the
capacity of a hypothesis space that quanti昀椀es the conditions for stable learning from 昀椀nite data.

• Maximum margin classi昀椀ers and support vector machines (Vladimir Vapnik et al., 1990s): Pow-
erful discriminative learning algorithms with strong theoretical guarantees.
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Together, innovations like these provided the foundations for statistical learning systems that could
e昀昀ectively extract knowledge from raw data. They set the stage for the following decades of progress
that would see machine learning mature into one of the most transformative technologies of our time.

2.2 Understanding Learning Systems

Having reviewed the historical context and key conceptual shifts behind the emergence of machine
learning, we are now in a position to examine learning systems in greater depth. In this section, we
will explore the fundamental principles that de昀椀ne the learning paradigm, the central role played by
data, and the nature of the patterns that learning uncovers.

2.2.1 The Learning Paradigm

At its core, machine learning represents a radical departure from traditional programming ap-
proaches. To appreciate this, it is helpful to consider how we might go about solving a complex task
such as object recognition using classical programming:

First, we would need to sit down and think hard about all the steps involved in identifying objects
in images. We might come up with rules like:

• “an eye has a roughly circular shape”
• “a nose is usually located below the eyes and above the mouth”
• “a face is an arrangement of eyes, nose and mouth”, etc.

Next, we would translate these insights into speci昀椀c programmatic instructions:

• “scan the image for circular regions”
• “check if there are two such regions in close horizontal proximity”
• “label these candidate eye regions”, etc.

We would then need to painstakingly debug and re昀椀ne our program to handle all the edge cases
and sources of variability we failed to consider initially.

If our program needs to recognize additional object categories, we would have to return to step 1
and repeat the whole arduous process for each new class.

The classical approach places the entire explanatory burden on the human programmer - we start
from a blank slate andmust explicitly spell out everyminute decision and edge case handling routine.

In contrast, the machine learning approach follows a very di昀昀erent recipe:
First, we collect a large dataset of labeled examples (e.g. images pairedwith the names of the objects

they contain). We select a general-purpose model family that we believe has the capacity to capture
the relevant patterns (e.g. deep convolutional neural networks for visual recognition). We specify
a measure of success (e.g. what fraction of the images are labeled correctly) - this is our objective
function.

We feed the dataset to a learning algorithm that automatically adjusts the parameters of the model
so as to optimize the objective function on the provided examples. We evaluate the trained model on
a separate test set to assess its ability to generalize to new cases.



2.2. Understanding Learning Systems 8

Notice how the emphasis has shifted:
• Rather than having to explain “how” to solve the task, we provide examples of “what” we want

and let the learning algorithm 昀椀gure out the “how” for us.
• Instead of handcrafting detailed solution steps, we select a 昀氀exiblemodel and o昀툀oad the burden

of tuning its parameters to an optimization procedure.
• In place of open-ended debugging, we can run controlled experiments to objectively measure

generalization to unseen data.

For amore concrete illustration, consider howwemight applymachine learning to the task of spam
email classi昀椀cation:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score

# 1. Collect labeled data
emails, labels = load_email_data()

# 2. Select a model family
vectorizer = CountVectorizer() # convert email text to word counts
classifier = MultinomialNB() # naive Bayes with multinomial likelihood

# 3. Specify an objective function



Chapter 2. The Art and Science of Machine Learning 9

def objective(model, X, y):
return accuracy_score(y, model.predict(X))

# 4. Feed data to a learning algorithm
# learn a spam classifier from 70% of the data
train_emails, test_emails, train_labels, test_labels = train_test_split(

emails, labels, train_size=0.7, stratify=labels)
X_train = vectorizer.fit_transform(train_emails)
classifier.fit(X_train, train_labels)

# 5. Evaluate generalization on held-out test set
X_test = vectorizer.transform(test_emails)
print("Test accuracy:", objective(classifier, X_test, test_labels))

This simple example illustrates the key ingredients:
• Data: A collection of example emails, along with human-provided labels indicating whether

each one is spam or not.
• Model: The naive Bayes classi昀椀er, which speci昀椀es the general form of the relationship between

the input features (word counts) and output labels (spam or not spam) in terms of probabilistic
assumptions.

• Objective: The accuracy metric, which quanti昀椀es the quality of predictions made by the model
in terms of the fraction of emails that are labeled correctly.

• Learning algorithm: The fitmethod of the classi昀椀er, which takes in the training data and 昀椀nds
the model parameters that maximize the likelihood of the observed labels.

• Generalization: The trained model is evaluated not on the data it was trained on, but rather on
a separate test set that was held out during training. This provides an unbiased estimate of how
well the model generalizes to new, unseen examples.

Of course, this is just a toy example intended to illustrate the basic 昀氀ow. Real-world applications
involve much larger datasets, more complex models, and more challenging prediction tasks. But the
fundamental paradigm remains the same: by optimizing an objective function on a sample of training
data, learning algorithms can automatically extract useful patterns and knowledge that generalize to
novel situations.

2.2.2 Learning from Data

As the spam classi昀椀cation example makes clear, data plays a 昀椀rst-class role in machine learning. In-
deed, one of the de昀椀ning characteristics of the 昀椀eld is its focus on automatically extracting knowledge
from empirical observations, rather than relying solely on human-encoded expertise. In this section,
we take a closer look at how learning systems leverage data to acquire and re昀椀ne their knowledge.

To begin, it is useful to clarify what we mean by “data” in a machine learning context. At the most
basic level, a dataset is a collection of examples, where each example (also known as a “sample” or
“instance”) provides a concrete instantiation of the task or phenomenon we wish to learn about. In
the spam classi昀椀cation scenario, for instance, each example corresponds to an actual email message,
along with a label indicating whether it is spam or not.

More formally, we can think of an example as a pair (x,y), where:
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• þ is a vector of input features that provide a quantitative representation of the relevant properties
of the example. In the case of emails, the features might be counts of various words appearing
in the message.

• ÿ is the target output variable that we would like to predict given the input features. For spam
classi昀椀cation, ÿ is a binary label, but in general it could be a continuous value (regression), a
multi-class label (classi昀椀cation), or a more complex structure like a sequence or image.

A dataset, then, is a collection of n such examples:� = (þ1,ÿ1), ..., (þ�,ÿ�)
The goal of learning is to use the dataset � to infer a function Ą that maps from inputs to outputs:Ą ∶ � → � such that Ą(þ) ≈ ÿ for future examples (þ,ÿ) that were not seen during training.
With this formalism in mind, we can identify several key properties of data that are crucial for

e昀昀ective learning:
• Representativeness: To generalize well, the examples in � should be representative of the distri-

bution of inputs that will be encountered in the real world. If the training data is systematically
biased or skewed relative to the actual test distribution, the learned model may fail to perform
well on new cases.

• Quantity: In general, more data is better for learning, as it provides a richer sampling of the
underlying phenomena and helps the model to avoid over昀椀tting to accidental regularities. The
amount of data needed to achieve a desired level of performance depends on the complexity of
the task and the expressiveness of the model class.

• Quality: The utility of data for learning can be undermined by issues like noise, outliers, and
missing values. Careful data preprocessing, cleaning, and augmentation are often necessary to
ensure that the model is able to extract meaningful signal.

• Diversity: For learning to succeed, the training data must contain su昀케cient variability along
the dimensions that are relevant for the task at hand. If all the examples are highly similar, the
model may fail to capture the full range of behaviors needed for robust generalization.

• Labeling: In supervised learning tasks, the quality and consistency of the output labels is critical.
Noisy, ambiguous, or inconsistent labels can severely degrade the quality of the learned model.

To make these ideas more concrete, let’s return to the spam classi昀椀cation example. Consider the
following toy dataset:

train_emails = [
"Subject: You won't believe this amazing offer!",
"Subject: Request for project meeting",
"Subject: URGENT: Update your information now!",
"Hey there, just wanted to follow up on our conversation...",
"Subject: You've been selected for a special promotion!",

]

train_labels = ["spam", "not spam", "spam", "not spam", "spam"]

Even without running any learning algorithms, we can identify some potential issues with this
dataset:
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• Small quantity: Only 5 examples is not enough to learn a robust spam classi昀椀er that covers the
diversity of real-world emails. With so few examples, the model is likely to over昀椀t to idiosyn-
cratic patterns like the speci昀椀c subject lines and fail to generalize well.

• Lack of diversity: The examples cover a very narrow range of email types (mainly short subject
lines). A more representative sample would include a mix of subject lines, body text, sender
information, etc. that better re昀氀ect the variability of real emails.

• Label inconsistency: On closer inspection, we might question whether the labeling is fully con-
sistent. For instance, the 4th email seems potentially ambiguous - without more context about
the content of the “conversation” it refers to, it’s unclear whether it should be classi昀椀ed as spam
or not. Inconsistent labeling is a common source of problems in supervised learning.

To address these issues, we would want to collect a much larger and more diverse set of labeled
examples. We might also need to do more careful data cleaning and preprocessing, for instance:

• Tokenizing the email text into individual words or n-grams
• Removing stop words, punctuation, and other low-information content
• Stemming or lemmatizing words to collapse related variants
• Normalizing features like word counts to avoid undue in昀氀uence of message length
• Checking for and resolving inconsistencies or ambiguities in label assignments

In general, high-quality data is essential for successful learning. While it’s tempting to focusmainly
on the choice of model class and learning algorithm, in practice the quality of the results is often
determined by the quality of the data preparation pipeline.

As the saying goes, ”garbage in, garbage out”* - if the input data is full of noise, bias, and inconsis-
tencies, no amount of algorithmic sophistication can extract meaningful patterns.*

2.2.3 The Nature of Patterns
Having looked at the role of data in learning, let’s now turn our attention to the other central ingredi-
ent - the patterns that learning algorithms aim to extract. What exactly do we mean by “patterns” in
the context of machine learning, and how do learning systems represent and leverage them?

In themost general sense, a pattern is any regularity or structure that exists in the data and captures
some useful information for the task at hand. For instance, in spam classi昀椀cation, some relevant
patterns might include:

• Certain words or phrases that are more common in spam messages than in normal emails
(e.g. “special o昀昀er”, “free trial”, “no credit check”, etc.)

• Unusual formatting or stylistic choices that are suggestive of marketing content (e.g. excessive
use of capitalization, colorful text, or images)

• Suspicious sender information, like mismatches between the stated identity and email address,
or sending from known spam domains

A key insight of machine learning is that such patterns can be represented andmanipulatedmathe-
matically, as operations in some formal space. For instance, the presence or absence of speci昀椀c words
can be encoded as a binary vector, with each dimension corresponding to a word in the vocabulary:

vocabulary = ["credit", "offer", "special", "trial", "won't", "believe", ...]

def email_to_vector(email):
vector = [0] * len(vocabulary)
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for word in email.split():
if word in vocabulary:

index = vocabulary.index(word)
vector[index] = 1

return vector

# Example usage
message1 = "Subject: You won't believe this amazing offer!"
message2 = "Subject: Request for project meeting"

print(email_to_vector(message1))
# Output: [0, 1, 0, 0, 1, 1, ...]

print(email_to_vector(message2))
# Output: [0, 0, 0, 0, 0, 0, ...]

In this simple “bag of words” representation, each email is transformed into a vector that indicates
whichwords from a prede昀椀ned vocabulary are present in it. Already, some potentially useful patterns
start to emerge - notice how the spam message gets mapped to a vector with more non-zero entries,
suggesting the presence of marketing language.

Of course, this is a very crude representation that discards a lot of potentially relevant information
(word order, punctuation, contextualized meanings, etc.). More sophisticated approaches attempt to
preserve additional structure, for instance:

• Using counts or tf-idf weights instead of binary indicators to capture word frequencies
• Extracting ÿ-grams (contiguous sequences of ÿ words) to partially preserve local word order
• Applying techniques like latent semantic analysis or topic modeling to identify thematic struc-

tures
• Learning dense vector embeddings that map words and documents to points in a continuous

semantic space
What these approaches all have in common is that they de昀椀ne a systematic mapping from the raw

data (e.g. natural language text) to some mathematically tractable representation (e.g. vectors in a
high-dimensional space). This mapping is where the “learning” in “machine learning” really takes
place - by discovering the speci昀椀c parameters of the mapping that lead to e昀昀ective performance on
the training examples, the learning algorithm implicitly identi昀椀es patterns that are useful for the task
at hand.

To make this more concrete, let’s take a closer look at how a typical supervised learning algorithm
actually goes about extracting patterns from data. Recall that the goal is to learn a function Ą ∶ � → �
that maps from input features to output labels, such that Ą(þ) ≈ ÿ for examples (þ,ÿ) drawn from
some underlying distribution.

In practice, most learning algorithms work by de昀椀ning a parametrized function family �� and
searching for the parameter values � that minimize the empirical risk (i.e. the average loss) on the
training examples: �∗ = ÿăąþ�ÿ�1/ÿ∑� �(��(þ�),ÿ�)

Here � is a loss function that quanti昀椀es the discrepancy between the predicted labels ��(þ�) and
the true labels ÿ�, and the summation ranges over the ÿ examples in the training dataset.



Chapter 2. The Art and Science of Machine Learning 13

Di昀昀erent learning algorithms are characterized by the speci昀椀c function families � and loss func-
tions � that they employ, as well as the optimization procedure used to search for �∗. But at a high
level, they all aim to 昀椀nd patterns - as captured by the parameters � - that enable the predictions ��(þ)
to closely match the actual labels ÿ across the training examples.

Let’s make this more vivid by returning to the spam classi昀椀cation example. A very simple model
family for this task is logistic regression, which learns a linear function of the input features:��(þ) = �(�� þ)

Here þ is the vector of word-presence features, � is a vector of real-valued weights, and � is the
logistic sigmoid function that “squashes” the linear combination �� þ to a value between 0 and 1
interpretable as the probability that the email is spam.

Coupled with the binary cross-entropy loss, the learning objective becomes:�∗ = ÿăąþ�ÿ�1/ÿ∑� [−ÿ�ýĀą(��(þ�))−(1−ÿ�)ýĀą(1−��(þ�))]
where ÿ� ∈ 0,1 indicates the true label (spam or not spam) for the �ąℎ training example.
Solving this optimization problem via a technique like gradient descent will yield a weight vector�∗ such that:
• Weights for words that are more common in spam messages (like “o昀昀er” or “free”) will tend to

be positive, increasing the predicted probability of spam when those words are present.
• Weights for words that are more common in normal messages (like “meeting” or “project”) will

tend to be negative, decreasing the predicted probability of spamwhen those words are present.
• The magnitude of each weight corresponds to how predictive the associated word is of spam

vs. non-spam - larger positive weights indicate stronger spam signals, while larger negative
weights indicate stronger non-spam signals.

In this way, the learning process automatically discovers the speci昀椀c patterns of word usage that
are most informative for distinguishing spam from non-spam, as summarized in the weights �∗. Fur-
thermore, the learned weights implicitly de昀椀ne a decision boundary in the high-dimensional feature
space - emails that fall on one side of this boundary (as determined by the sign of �� þ) are classi昀椀ed
as spam, while those on the other side are classi昀椀ed as non-spam.

This simple example illustrates several key properties that are common to many learning algo-
rithms:

The parameters � provide a compact summary of the patterns in the data that are relevant for the
task at hand. In this case, they capture the correlations between the presence of certain words and the
spam/non-spam label.

The learning process is data-driven - the speci昀椀c values of the weights are determined by the em-
pirical distribution of word frequencies in the training examples, not by any a priori assumptions or
hand-coded rules.

The learned patterns are task-speci昀椀c - the weights are tuned to optimize performance on the par-
ticular problem of spam classi昀椀cation, and may not be meaningful or useful for other tasks.

The expressiveness of the learned patterns is limited by the model family - in this case, the assump-
tion of a simple linear relationship between word presence and spam probability. More complex
model families (like deep neural networks) can capture richer, more nuanced patterns.

Of course, this is just a toy example intended to illustrate the basic principles. In practice, modern
learning systems often employ much higher-dimensional feature spaces, more elaborate model fam-
ilies, and more sophisticated optimization procedures. But the fundamental idea remains the same -
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by adjusting the parameters of a 昀氀exible model to minimize the empirical risk on a training dataset,
learning algorithms can automatically discover patterns that generalize to improve performance on
novel examples.

2.3 The Nature of Machine Learning
Having examined the fundamental components of learning systems - the data they learn from and
the patterns they aim to extract - we now turn to some higher-level questions about the nature of
learning itself. What does it mean for a machine to “learn” in the 昀椀rst place? How does this process
di昀昀er from other approaches to arti昀椀cial intelligence? And what challenges and opportunities does
the learning paradigm present?

2.3.1 Learning as Induction
At a fundamental level, machine learning can be understood as a form of inductive inference - the
process of drawing general conclusions from speci昀椀c examples. In philosophical terms, this contrasts
with deductive inference, which derives speci昀椀c conclusions from general premises.

Consider a classic example of deductive reasoning:
• All men are mortal. (premise)
• Socrates is a man. (premise)
• Therefore, Socrates is mortal. (conclusion)

Here, the conclusion follows necessarily from the premises - if we accept that all men are mortal
and that Socrates is a man, we must also accept that Socrates is mortal. The conclusion is guaranteed
to be true if the premises are true.

Inductive reasoning, on the other hand, goes in the opposite direction:
• Socrates is a man and is mortal.
• Plato is a man and is mortal.
• Aristotle is a man and is mortal.
• Therefore, all men are mortal.

Here, the conclusion is not guaranteed to be true, even if all the premises are true - we can never
be certain that the next man we encounter will be mortal, no matter how many examples of mortal
men we have seen. At best, the conclusion is probable, with a degree of con昀椀dence that depends on
the number and diversity of examples observed.

Machine learning can be seen as a form of algorithmic induction - instead of a human observer
drawing conclusions from examples, we have a learning algorithm that discovers patterns in data
and uses them to make predictions about novel cases. Just as with human induction, the conclusions
of amachine learningmodel are never guaranteed to be true, but can be highly probable if the training
data is su昀케ciently representative and the model family is appropriate for the task.

To make this more concrete, let’s return to the spam classi昀椀cation example. Recall that our goal is
to learn a function Ą that maps from email features þ to spam labels ÿ, such that Ą(þ) ≈ ÿ for new
examples (þ,ÿ) drawn from the same distribution as the training data.

In the logistic regression model we considered earlier, Ą takes the form:Ą(þ) = �(�� þ)
where � is a vector of learned weights and � is the logistic sigmoid function.
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Now, imagine that we train this model on a dataset of 1000 labeled emails, using gradient descent
to 昀椀nd the weights �∗ that minimize the average cross-entropy loss on the training examples. We can
then apply the learned function f* to classify new emails as spam or not spam:

def predict_spam(email, weights):
features = email_to_vector(email)
score = weights.dot(features)
probability = sigmoid(score)
return probability > 0.5

# Example usage
weights = train_logistic_regression(train_emails, train_labels)

new_email = "Subject: Amazing opportunity to work from home!"
prediction = predict_spam(new_email, weights)

print(prediction) # Output: True

This process is fundamentally inductive:
• We start with a collection of speci昀椀c examples (the training emails and their labels).
• We use these examples to learn a general rule (the weight vector �∗) for mapping from inputs

to outputs.
• We apply this rule to make predictions about new, unseen examples (e.g. classifying the new

email as spam).

Just as with human induction, there is no guarantee that the predictionswill be correct - the learned
rule is only a generalization based on the limited sample of examples in the training data. If the
training set is not perfectly representative of the real distribution of emails (which it almost never is),
there will necessarily be some errors and edge cases that the model gets wrong.

However, if the inductive reasoning is sound - i.e. if the patterns discovered by the learning al-
gorithm actually capture meaningful regularities in the data - then the model’s predictions will be
correct more often than not. Furthermore, as we train on larger and more diverse datasets, we can ex-
pect the accuracy and robustness of the learned patterns to improve, leading to better generalization
performance.

Of course, spam classi昀椀cation is a relatively simple example as far as machine learning tasks go.
In more complex domains like computer vision, natural language processing, or strategic decision-
making, the input features and output labels can be much higher-dimensional and more abstract, the
model families more elaborate andmultilayered, and the optimization procedures more intricate and
computationally intensive.

However, the fundamental inductive reasoning remains the same:
• Start with a set of training examples that (hopefully) capture relevant patterns and variations.
• De昀椀ne a suitably expressive model family and objective function.
• Use an optimization algorithm to 昀椀nd the model parameters that minimize the objective on the

training set.
• Apply the learned model to predict outputs for new, unseen inputs.
• Evaluate the quality of the predictions and iterate to improve the data, model, and optimization

as needed.
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The power of this paradigm lies in its generality - by framing the search for patterns as an optimiza-
tion problem, learning algorithms can be applied to an extremely wide range of domains and tasks
without the need for detailed domain-speci昀椀c knowledge engineering. Given enough data and com-
pute, the same basic approach can be used to learn patterns in images, text, speech, sensor readings,
economic trends, user behavior, and countless other types of data.

At the same time, the generality of the paradigm also highlights some of its limitations and chal-
lenges:

• Dependence on data quality: The performance of a learning system is fundamentally limited by
the quality and representativeness of its training data. If the data is noisy, biased, or incomplete,
the learned patterns will re昀氀ect those limitations.

• Opacity of learned representations: The patterns discovered by learning algorithms can be
highly complex and challenging to interpret. While simplermodel families like linear regression
produce relatively transparent representations, the internal structure of large neural networks
is often inscrutable, making it di昀케cult to understand how they arrive at their predictions.

• Lack of explicit reasoning: Learning systems excel at discovering statistical patterns, but strug-
gle with the kind of explicit, logical reasoning that comes naturally to humans. Tasks that re-
quire careful deliberation, causal analysis, or manipulation of symbolic representations can be
challenging to frame in purely statistical terms.

• Potential for bias and fairness issues: If the training data re昀氀ects societal biases or underrepre-
sents certain groups, the learned models can perpetuate or even amplify those biases in their
predictions. Careful auditing and debiasing of data and models is essential to ensure equitable
outcomes.

Despite these challenges, the inductive learning paradigm has proven remarkably e昀昀ective across
a wide range of applications. In domains from medical diagnosis and scienti昀椀c discovery to robotics
and autonomous vehicles, machine learning systems are able to match or exceed human performance
by discovering patterns that are too subtle or complex for manual speci昀椀cation. As the availability of
data and computing power continues to grow, it’s likely that the scope and impact ofmachine learning
will only continue to expand.

2.3.2 The Role of Uncertainty

One of the most crucial things to understand about machine learning is that it is, at its core, a fun-
damentally probabilistic endeavor. When a learning algorithm draws conclusions from data, those
conclusions are never absolutely certain, but rather statements of probability based on the patterns in
the training examples.

Think back to our spam classi昀椀cation example. Even if our training dataset was very large and
diverse, covering a wide range of both spam and legitimate emails, we can never be 100% sure that
the patterns it captures will hold for every possible future email. There could always be some new
type of spam that looks very di昀昀erent fromwhat we’ve seen before, or some unusual legitimate email
that happens to share many features with typical spam.

What a goodmachine learningmodel gives us, then, is not a de昀椀nite classi昀椀cation, but a probability
estimate. When we use logistic regression to predict the “spamminess” of an email, the model’s
output is a number between 0 and 1 that can be interpreted as the estimated probability that the
email is spam, given its input features.

This might seem like a limitation compared to a deterministic rule-based system that always gives
a de昀椀nite yes-or-no answer. However, having a principled way to quantify uncertainty is actually
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a key strength of the probabilistic approach. By explicitly representing the con昀椀dence of its predic-
tions, a probabilistic model provides valuable information for downstream decision-making and risk
assessment.

For instance, consider an email client that uses a spam 昀椀lter to automatically move suspected spam
messages to a separate folder. If the 昀椀lter is based on a probabilistic model, we can set a con昀椀dence
threshold for taking this action - say, only move messages with a 95% or higher probability of being
spam. This allows us to trade o昀昀 between false positives (legitimate emails moved to the spam folder)
and false negatives (spam emails left in the main inbox) in a principled way.

More generally, having access to well-calibrated probability estimates opens up a range of possibil-
ities for uncertainty-aware decision making, such as:

• Deferring to human judgment for borderline cases where the model is unsure
• Gathering additional information (e.g. asking the user for feedback) to resolve uncertainty
• Hedging decisions to balance risk and reward in the face of uncertain outcomes
• Combining predictions from multiple models to improve overall con昀椀dence

Of course, for these bene昀椀ts to be realized, it’s essential that the probability estimates produced
by the model are actually well-calibrated - that is, they accurately re昀氀ect the true likelihood of the
predicted outcomes. If a model consistently predicts 95% con昀椀dence for events that only occur 60%
of the time, its uncertainty estimates are not reliable.

There are various techniques for quantifying and calibrating uncertainty in machine learning mod-
els, including:

• Explicit probabilitymodels: Somemodel families, like Bayesian networks orGaussian processes,
are designed to naturally produce probability distributions over outcomes. By incorporating
prior knowledge and explicitly modeling sources of uncertainty, these approaches can provide
principled uncertainty estimates.

• Ensemblemethods: Techniques like bagging (bootstrap aggregating) and boosting involve train-
ing multiple models on di昀昀erent subsets or weightings of the data, then combining their predic-
tions. The variation among the ensemble’s predictions provides a measure of uncertainty.

• Calibration methods: Post-hoc calibration techniques like Platt scaling or isotonic regression
can be used to adjust the raw con昀椀dence scores from a model to better align with empirical
probabilities.

• Conformal prediction: A framework for providing guaranteed coverage rates for predictions,
based on the assumption that the data are exchangeable. Conformal predictors accompany each
prediction with a measure of con昀椀dence and a set of possible outcomes.

The importance of quantifying uncertainty goes beyond just improving decision quality - it’s also
crucial for building trust and promoting responsible use of machine learning systems. When amodel
accompanies its predictions with meaningful con昀椀dence estimates, users can make informed choices
about when and how to rely on its outputs. This is especially important in high-stakes domains like
healthcare or criminal justice, where the consequences of incorrect predictions can be serious.

Finally, reasoning about uncertainty is also central to more advanced machine learning paradigms
like reinforcement learning and active learning:

• In reinforcement learning, an agent learns tomake decisions by interactingwith an environment
and receiving rewards or penalties. Because the environment is often stochastic and the conse-
quences of actions are uncertain, the agent must reason about the expected long-term value of
di昀昀erent choices under uncertainty.



2.3. The Nature of Machine Learning 18

• In active learning, amodel is allowed to interactively query for labels of unlabeled examples that
would bemost informative for improving its predictions. Selecting these examples requires esti-
mating the expected reduction in uncertainty from obtaining their labels, based on the model’s
current state of knowledge.

As we continue to push the boundaries of what machine learning systems can do, the ability to
properly quantify and reason about uncertainty will only become more essential. From building ro-
bust and reliable models to enabling e昀昀ective human-AI collaboration, embracing uncertainty is key
to unlocking the full potential of machine learning.

2.3.3 Model Complexity and Regularization
Another fundamental challenge in machine learning is striking the right balance betweenmodel com-
plexity and generalization performance. On one hand, we want our models to be expressive enough
to capture meaningful patterns in the data. On the other hand, we don’t want them to over昀椀t to noise
or idiosyncrasies of the training set and fail to generalize to new examples.

This tradeo昀昀 is commonly known as the bias-variance dilemma:
• Bias refers to the error that comes from modeling assumptions and simpli昀椀cations. A model

with high bias makes strong assumptions about the data-generating process, which can lead to
under昀椀tting if those assumptions are wrong.

• Variance refers to the error that comes from sensitivity to small 昀氀uctuations in the training data.
A model with high variance can 昀椀t the training set very well but may over昀椀t to noise and fail to
generalize to unseen examples.

As an analogy, think of trying to 昀椀t a curve to a set of scattered data points. A simple linear model
has high bias but low variance - it makes the strong assumption that the relationship is linear, which
limits its ability to 昀椀t complex patterns, but also makes it relatively stable across di昀昀erent subsets
of the data. Conversely, a complex high-degree polynomial has low bias but high variance - it can
昀椀t the training points extremely well, but may wildly oscillate between them and make very poor
predictions on new data.

In general, as we increase the complexity of a model (e.g. by adding more features, increasing the
depth of a neural network, or reducing the strength of regularization), we decrease bias but increase
variance. The goal is to 昀椀nd the sweet spot where the model is complex enough to capture relevant
patterns but not so complex that it over昀椀ts to noise.

One way to control model complexity is through the choice of hypothesis space - the set of possible
models that the learning algorithm can consider. A simple hypothesis space (like linear functions
of the input features) will have low variance but potentially high bias, while a complex hypothesis
space (like deep neural networks with millions of parameters) will have low bias but potentially high
variance.

Another key tool formanaging complexity is regularization - techniques for constraining themodel’s
parameters or limiting its capacity to over昀椀t. Some common regularization approaches include:

• Parameter norm penalties: Adding a penalty term to the loss function that encourages the
model’s weights to be small. L2 regularization (also known as weight decay) penalizes the
squared Euclidean norm of the weights, while L1 regularization penalizes the absolute values.
These penalties discourage the model from relying too heavily on any one feature.

• Dropout: Randomly “dropping out” (setting to zero) a fraction of the activations in a neural net-
work during training. This prevents the network from relying too heavily on any one pathway
and encourages it to learn redundant representations.
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• Early stopping: Monitoring the model’s performance on a validation set during training and
stopping the optimization process when the validation error starts to increase, even if the train-
ing error is still decreasing. This prevents the model from over昀椀tting to the training data.

The amount and type of regularization to apply is a key hyperparameter that must be tuned based
on the characteristics of the data and the model. Too much regularization can lead to under昀椀tting,
while too little can lead to over昀椀tting. Techniques like cross-validation and information criteria can
help guide the selection of appropriate regularization settings.

It’s worth noting that the bias-variance tradeo昀昀 and the role of regularization can vary depending
on the amount of training data available. In the “classical” regime where the number of examples is
small relative to the number ofmodel parameters, regularization is essential for preventing over昀椀tting.
However, in the “modern” regime of very large datasets and overparameterized models (like deep
neural networks with millions of parameters), the risk of over昀椀tting is much lower, and the role of
regularization is more subtle.

In fact, recent research has suggested that overparameterized models can exhibit “double descent”
behavior, where increasing the model complexity beyond the point of interpolating the training
data can actually improve generalization performance. This challenges the classical view of the
bias-variance tradeo昀昀 and suggests that our understanding of model complexity and generalization
is still evolving. Despite these nuances, the basic principles of managing model complexity and
using regularization to promote generalization remain central to the practice of machine learning.
As we train increasingly powerful models on ever-larger datasets, 昀椀nding the right balance between
expressiveness and constrainedness will be key to achieving robust and reliable performance.

2.4 Building Learning Systems
Now that we’ve explored some of the key theoretical principles behind machine learning, let’s turn
our attention to the practical considerations involved in building e昀昀ective learning systems. What are
the key components of a successful machine learning pipeline, and how do they 昀椀t together?

2.4.1 Data Preparation
The 昀椀rst and arguably most important step in any machine learning project is preparing the data. As
we saw in Section 6.2.2, the quality and representativeness of the training data is essential for learning
meaningful patterns that generalize well to new examples. No amount of algorithmic sophistication
can make up for fundamentally 昀氀awed or insu昀케cient data.

Key aspects of data preparation include:
• Data cleaning: Identifying and correcting errors, inconsistencies, and missing values in the

raw data. This can involve steps like removing duplicate records, standardizing formats, and
imputing missing values based on statistical patterns.

• Feature engineering: Transforming the raw input data into a representation that is more
amenable to learning. This can involve steps like normalizing numeric features, encoding
categorical variables, extracting domain-speci昀椀c features, and reducing dimensionality.

• Data augmentation: Increasing the size and diversity of the training set by generating new
examples through transformations of the existing data. This is especially common in domains
like computer vision, where techniques like random cropping, 昀氀ipping, and color jittering can
help improve the robustness of the learned models.

• Data splitting: Dividing the data into separate sets for training, validation, and testing. The
training set is used to 昀椀t the model parameters, the validation set is used to tune hyperparame-
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ters and detect over昀椀tting, and the test set is used to evaluate the 昀椀nal performance of themodel
on unseen data.

The speci昀椀cs of data preparation will vary depending on the domain and the characteristics of
the data, but the general principles of ensuring data quality, representativeness, and suitability for
learning are universal. It’s often said that data preparation is 80% of the work in machine learning,
and while this may be an exaggeration, it underscores the critical importance of getting the data right.

To make this more concrete, let’s consider an example of data preparation in the context of a real-
world problem. Supposewe’reworking on amachine learning system to predict housing prices based
on features like square footage, number of bedrooms, location, etc. Our raw data might look some-
thing like this:

Address,Sq.Ft.,Beds,Baths,Price
123 Main St,2000,3,2.5,$500,000
456 Oak Ave,1500,2,1,"$350,000"
789 Elm Rd,1800,3,2,425000

To prepare this data for learning, we might perform the following steps:
• Standardize the ‘Price’ column to remove the “$” and “,” characters and convert to a numeric

type.
• Impute missing values in the ‘Beds’ and ‘Baths’ columns (if any) with the median or most fre-

quent value.
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• Normalize the ‘Sq.Ft.’ column by subtracting the mean and dividing by the standard deviation.
• One-hot encode the ‘Address’ column into separate binary features for each unique location.
• Split the data into training, validation, and test sets in a strati昀椀ed fashion to ensure representative

price distributions in each split.

The end result might look something like this:

Sq.Ft._Norm,Beds,Baths,123_Main_St,456_Oak_Ave,789_Elm_Rd,...,Price
,3,2.5,1,0,0,...,500000
-0.58,2,1,0,1,0,...,350000
,3,2,0,0,1,...,425000
...

Of course, this is just a toy example, and in practice the data preparation process can be muchmore
involved. The key point is that investing time and e昀昀ort into carefully preparing the data is essential
for building successful learning systems.

2.4.2 Model Selection and Training
Once the data is prepared, the next step is to select an appropriate model family and training pro-
cedure. As we saw in Section 6.3.3, this involves striking a balance between model complexity and
generalization ability, often through a combination of cross-validation and regularization techniques.

Some key considerations in model selection include:
• Inductive biases: The assumptions and constraints that are built into the model architecture. For

example, convolutional neural networks have an inductive bias towards translation invariance
and local connectivity, which makes them well-suited for image recognition tasks.

• Parameter complexity: The number of learnable parameters in themodel, which a昀昀ects its capacity
to 昀椀t complex patterns but also its potential to over昀椀t to noise in the training data. Regularization
techniques can help control parameter complexity.

• Computational complexity: The time and memory requirements for training and inference with
the model. More complex models may require specialized hardware (like GPUs) and longer
training times, which can be a practical limitation.

• Interpretability: The extent to which the learned model can be inspected and understood by hu-
mans. In some domains (like healthcare or 昀椀nance), interpretability may be a key requirement
for building trust and ensuring regulatory compliance.

The choice of model family will depend on the nature of the problem and the characteristics of
the data. For structured data with clear feature semantics, “shallow” models like linear regression,
decision trees, or support vector machines may be appropriate. For unstructured data like images,
audio, or text, “deep” models like convolutional or recurrent neural networks are often used.

Once a model family is selected, the next step is to train the model on the prepared data. This
typically involves the following steps:

• Instantiate the model with initial parameter values (e.g. random weights for a neural network).
• De昀椀ne a loss function that measures the discrepancy between the model’s predictions and the

true labels on the training set.
• Use an optimization algorithm (like stochastic gradient descent) to iteratively update the model

parameters to minimize the loss function.
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• Monitor the model’s performance on the validation set to detect over昀椀tting and tune hyperpa-
rameters.

• Stop training when the validation performance plateaus or starts to degrade.

The speci昀椀cs of the training process will vary depending on the chosenmodel family and optimiza-
tion algorithm, but the general goal is to 昀椀nd the model parameters that minimize the empirical risk
on the training data while still generalizing well to unseen examples.

To illustrate these ideas, let’s continue with our housing price prediction example. Suppose we’ve
decided to use a regularized linear regression model of the form:āă�āă = ý0 +ý1 ∗ĄĂĄą+ý2 ∗ĀăĂĄ+ý3 ∗ĀÿąℎĄ+ ...

where ý0,ý1, ... are the learned weights and sqft, beds, baths, ... are the input features.
We can train this model using gradient descent on the mean squared error loss function:

def mse_loss(y_true, y_pred):
return np.mean((y_true - y_pred) ** 2)

def gradient_descent(X, y, w, lr=0.01, num_iters=100):
for i in range(num_iters):

y_pred = np.dot(X, w)
error = y_pred - y
gradient = 2 * np.dot(X.T, error) / len(y)
w -= lr * gradient

return w

# Add a bias term to the feature matrix
X = np.c_[np.ones(len(X)), X]

# Initialize weights to zero
w = np.zeros(X.shape[1])

# Train the model
w = gradient_descent(X, y, w)

We can also add L2 regularization to the loss function to prevent over昀椀tting:

def mse_loss_regularized(y_true, y_pred, w, alpha=0.01):
return mse_loss(y_true, y_pred) + alpha * np.sum(w**2)

def gradient_descent_regularized(X, y, w, lr=0.01, alpha=0.01, num_iters=100):
for i in range(num_iters):

y_pred = np.dot(X, w)
error = y_pred - y
gradient = 2 * np.dot(X.T, error) / len(y) + 2 * alpha * w
w -= lr * gradient

return w
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# Train the regularized model
w = gradient_descent_regularized(X, y, w)

The alpha parameter controls the strength of the regularization - larger values will constrain the
weights more strongly, while smaller values will allow the model to 昀椀t the training data more closely.

By tuning the learning rate lr, regularization strength alpha, and number of iterations num_iters,
we can 昀椀nd themodel that achieves the best balance between 昀椀tting the training data and generalizing
to new examples.

Of course, linear regression is just one possible model choice for this problem. We could also ex-
periment with more complex models like decision trees, random forests, or neural networks, each
of which would have its own set of hyperparameters to tune. The key is to use a combination of do-
main knowledge, empirical validation, and iterative re昀椀nement to 昀椀nd the model that best suits the
problem at hand.

2.4.3 Model Evaluation and Deployment
Once we’ve trained a model that performs well on the validation set, the 昀椀nal step is to evaluate its
performance on the held-out test set. This gives us an unbiased estimate of how well the model is
likely to generalize to real-world data.

Common evaluation metrics for classi昀椀cation problems include:
• Accuracy: The fraction of examples that are correctly classi昀椀ed.
• Precision: The fraction of positive predictions that are actually positive.
• Recall: The fraction of actual positives that are predicted positive.
• F1 Score: The harmonic mean of precision and recall.
• ROC AUC: The area under the receiver operating characteristic curve, whichmeasures the trade-

o昀昀 between true positive rate and false positive rate.

For regression problems, common metrics include:
• Mean squared error (MSE): The average squared di昀昀erence between the predicted and actual

values.
• Mean absolute error (MAE): The average absolute di昀昀erence between the predicted and actual

values.
• R-squared (R²): The proportion of variance in the target variable that is predictable from the

input features.

It’s important to choose an evaluation metric that aligns with the business goals of the problem.
For example, in a fraud detection system, we might care more about recall (catching as many fraud-
ulent transactions as possible) than precision (avoiding false alarms), while in a medical diagnosis
system, we might care more about precision (avoiding false positives that could lead to unnecessary
treatments).

If themodel’s performance on the test set is satisfactory, we can proceed to deploy it in a production
environment. This involves integrating the trainedmodel into a larger software system that can apply
it to new input data and surface the predictions to end users.

Some key considerations in model deployment include:
• Scalability: Can the model handle the volume and velocity of data in the production environ-

ment? This may require techniques like batch processing, streaming, or distributed computa-
tion.
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• Latency: How quickly does the model need to generate predictions in order to meet business
requirements? This may require optimizations like model compression, quantization, or hard-
ware acceleration.

• Monitoring: How will the model’s performance be monitored and maintained over time? This
may involve tracking key metrics, detecting data drift, and periodically retraining the model on
fresh data.

• Security: How will the model and its predictions be protected from abuse or unauthorized
access? This may involve techniques like input validation, output 昀椀ltering, or access controls.

Deploying andmaintainingmachine learningmodels in production is a complex topic that requires
close collaboration between data scientists, software engineers, and domain experts. It’s an active area
of research and development, with new tools and best practices emerging regularly.

To bring everything together, let’s return one last time to our housing price prediction example.
After training andvalidating our regularized linear regressionmodel, we can evaluate its performance
on the test set:

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# Generate predictions on the test set
y_pred = np.dot(X_test, w)

# Calculate evaluation metrics
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Test MSE: {mse:.2f}")
print(f"Test MAE: {mae:.2f}")
print(f"Test R^2: {r2:.2f}")

If we’re satis昀椀ed with the model’s performance, we can deploy it as part of a larger housing price
estimation service. This might involve:

• Wrapping the trained model in a web service API that can accept new housing features and
return price predictions.

• Integrating the API with a user-facing application that allows homeowners or real estate agents
to input property information and receive estimates.

• Setting up a data pipeline to continuously collect new housing data and periodically retrain the
model to capture changing market conditions.

• De昀椀ning monitoring dashboards and alerts to track the model’s performance over time and
detect any anomalies or degradations.

• Establishing governance policies and processes for managing the lifecycle of the model, from
development to retirement.

Again, this is a simpli昀椀ed example, but it illustrates the end-to-end process of building a machine
learning system, from data preparation to model development to deployment and maintenance.
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2.5 The Ethics and Governance of Machine Learning
As machine learning systems become more prevalent and powerful, it’s crucial that we grapple with
the ethical implications of their development and deployment. In this 昀椀nal section, we’ll explore some
key ethical considerations and governance principles for responsible machine learning.

2.5.1 Fairness and Bias
One of the most pressing ethical challenges in machine learning is ensuring that models are fair and
unbiased. If the training data re昀氀ects historical biases or discrimination, the resulting model may
perpetuate or even amplify those biases in its predictions.

For example, consider a hiring model that is trained on past hiring decisions to predict the like-
lihood of a candidate being successful in a job. If the training data comes from a company with a
history of discriminatory hiring practices, the model may learn to penalize candidates from under-
represented groups, even if those factors are not actually predictive of job performance.

Detecting and mitigating bias in machine learning systems is an active area of research, with tech-
niques like:

• Demographically balancing datasets to ensure equal representation of di昀昀erent groups
• Adversarial debiasing to remove sensitive information from model representations
• Regularization techniques to penalize models that exhibit disparate impact
• Post-processing methods to adjust model outputs to satisfy fairness constraints

However, these techniques are not perfect, and there is often a tradeo昀昀 between fairness and accu-
racy. Moreover, fairness is not a purely technical issue, but a sociotechnical one that requires ongoing
collaboration between machine learning practitioners, domain experts, policymakers, and a昀昀ected
communities.

2.5.2 Transparency and Accountability
Another key ethical principle for machine learning is transparency and accountability. As models
become more complex and consequential, it becomes harder for humans to understand how they
arrive at their predictions and to trace the provenance of their training data and design choices.

This opacity can make it di昀케cult to audit models for bias, safety, or compliance with regulations. It
can also make it harder to challenge or appeal decisions made by machine learning systems, leading
to a loss of human agency and recourse.

Some techniques for promoting transparency and accountability in machine learning include:
• Model interpretabilitymethods that provide human-understandable explanations ofmodel pre-

dictions
• Provenance tracking to document the lineage of data, code, and models used in a system
• Audit trails and version control to enable reproducibility and historical analysis
• Participatory design processes that involve a昀昀ected stakeholders in the development and gov-

ernance of models

However, like fairness, transparency is not purely a technical problem. It also requires institutional
structures and processes for oversight, redress, and accountability. This might involve things like:

• Designating responsible individuals or teams for the ethical development and deployment of
machine learning systems

• Establishing review boards or oversight committees to assess the social impact and governance
of models
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• Creating channels for a昀昀ected individuals and communities to provide input and feedback on
the use of machine learning in their lives

• Developing legal and regulatory frameworks to enforce transparency and accountability stan-
dards

2.5.3 Safety and Robustness

As machine learning systems are deployed in increasingly high-stakes domains, from healthcare to
transportation to criminal justice, ensuring their safety and robustness becomes paramount. Models
that are brittle, unreliable, or easily fooled can lead to serious harms if they are not carefully designed
and tested.

Some key challenges in machine learning safety and robustness include:

• Distributional shift, where models trained on one data distributionmay fail unexpectedly when
applied to a di昀昀erent distribution

• Adversarial attacks, where malicious actors can craft inputs that fool models into making egre-
gious errors

• Reward hacking, where optimizing for the wrong objective function can lead models to behave
in unintended and harmful ways

• Safe exploration, where models need to learn about their environment without taking catas-
trophic actions

Techniques for improving the safety and robustness of machine learning systems include:

• Anomaly and out-of-distribution detection to 昀氀ag inputs that are far from the training data
• Adversarial training and robustness regularization to make models more resilient to perturba-

tions
• Constrained optimization and safe reinforcement learning to respect safety boundaries during

learning
• Formal veri昀椀cation and testing to provide guarantees about model behavior under di昀昀erent

conditions

However, building truly safe and robustmachine learning systems requiresmore than just technical
solutions. It also requires:

• Rigorous safety culture and practices throughout the development and deployment lifecycle
• Close collaboration between machine learning practitioners, domain experts, and safety profes-

sionals
• Proactive engagement with policymakers and the public to align the development of machine

learning with societal values and expectations
• Ongoing monitoring and adjustment of deployed systems to catch and correct errors and unin-

tended consequences
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2.5.4 Ethical Principles and Governance Frameworks

To navigate the complex ethical landscape of machine learning, we need clear principles and gov-
ernance frameworks to guide responsible development and deployment. Some key principles that
have been proposed include:

• Transparency: Machine learning systems should be auditable and understandable by humans.
• Accountability: There should be clear mechanisms for oversight, redress, and enforcement.
• Fairness: Machine learning should treat all individuals equitably and avoid discriminatory im-

pacts.
• Safety: Machine learning systems should be reliable, robust, and safe throughout their lifecycle.
• Privacy: The collection and use of data for machine learning should respect individual privacy

rights and provide appropriate protections.
• Human agency: Machine learning systems should respect human autonomy and dignity, and

provide meaningful opportunities for human input and control.
• Societal bene昀椀t: The development and deployment of machine learning should be guided by

considerations of social good and collective wellbeing.

Translating these high-level principles into practical governance frameworks is an ongoing chal-
lenge, but some key elements include:

• Ethical codes of conduct and professional standards for machine learning practitioners
• Impact assessment and risk management processes to identify and mitigate potential harms
• Stakeholder engagement and participatory design to ensure a昀昀ected communities have a voice
• Regulatory sandboxes and policy experiments to test new governance approaches
• International standards and coordination to address the global nature of machine learning de-

velopment

Ultimately, the goal of machine learning governance should be to ensure that the technology is de-
veloped and deployed in a way that aligns with human values and enhances, rather than undermines,
human 昀氀ourishing. This is a complex and ongoing process that will require sustained collaboration
across disciplines, sectors, and geographies.

2.6 Conclusion
In this chapter, we’ve embarked on a comprehensive exploration of the foundations of machine learn-
ing, from its historical roots to its modern techniques to its future challenges. We’ve seen how the
昀椀eld has evolved from rule-based expert systems to data-driven statistical learning, powered by the
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explosion of big data and computing power. We’ve examined the fundamental components of ma-
chine learning systems - the data they learn from, the patterns they aim to extract, and the algorithms
that power the learning process. We’ve discussed key concepts like inductive bias, generalization,
over昀椀tting, and regularization, and how they relate to the art of building e昀昀ective models. We’ve
walked through the practical steps of constructing a machine learning pipeline, from data prepara-
tion to model selection to deployment and monitoring. And we’ve grappled with some of the ethical
challenges and governance principles that arise when building systems that can have signi昀椀cant im-
pact on people’s lives.

The 昀椀eld of machine learning is still rapidly evolving, with new breakthroughs and challenges
emerging every year. As we look to the future, some of the key frontiers and open questions include:

• Continual and lifelong learning: How can we build models that can learn continuously and adapt
to new tasks and domains over time, without forgetting what they’ve learned before?

• Causality and interpretability: How can wemove beyond purely associational patterns to uncover
causal relationships and build models that are more interpretable and explainable to humans?

• Robustness and safety: How can we guarantee that machine learning systems will behave safely
and reliably, even in the face of distributional shift, adversarial attacks, or unexpected situations?

• Human-AI collaboration: How can we design machine learning systems that augment and em-
power human intelligence, rather than replacing or undermining it?

• Ethical alignment: How can we ensure that the development and deployment of machine learn-
ing aligns with human values and promotes bene昀椀cial outcomes for society as a whole?

Advancingmachine learning requires collaboration across disciplines—from computer science and
statistics to psychology, social science, philosophy, and ethics. It also demands engagement with
policymakers, industry leaders, and the public to ensure responsible and inclusive development. The
goal is to build systems that learn from experience to make decisions that bene昀椀t humanity, whether
in healthcare, scienti昀椀c discovery, or improving daily life.

However, realizing this potential goes beyond technical progress; it requires addressing fairness,
accountability, transparency, and safetywhile navigating ethical and governance challenges. Machine
learning practitioners must not only push technological boundaries but also consider the broader
impact of their work. By embracing diverse perspectives and collaborating beyond our 昀椀eld, we shape
the future of AI. Staying curious, critical, and committed to responsible development will ensure
machine learning serves society for generations to come.
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Chapter 3

The “Hello World” of TinyML

3.1 Introduction to Microcontroller-Based Machine Learning

Machine learning at the edge represents a signi昀椀cant paradigm shift in computational intelligence, en-
abling sophisticated inferencing capabilities on resource-constrained embedded systems such as the
EFR32MG24 Wireless Gecko microcontroller. This chapter explores the theoretical foundations and
practical implementations of TinyML speci昀椀cally tailored for microcontroller deployment, with par-
ticular focus on the sine wave prediction model as the canonical “Hello World” example of TinyML.

The concept of a “Hello World” example has long been a tradition in programming, where new
technologies are introduced with simple code that demonstrates basic functionality. In the domain
of TinyML, our sine wave prediction serves as an elegant introduction to the end-to-end process of
building, training, and deploying models to microcontrollers.

3.2 Theoretical Foundations of TinyML for Microcontrollers

3.2.1 The Computational Constraints Paradigm

Traditional machine learning systems operate under the assumption of abundant computational re-
sources, where model complexity and size are secondary concerns to performance metrics. TinyML,
however, inverts this paradigm, placing primary emphasis on resource e昀케ciency while maintaining
acceptable inferencing quality.

For the EFR32MG24 platform, with its ARM Cortex-M33 core, limited memory footprint (1536KB
昀氀ash and 256KB RAM), and power-sensitive applications, we must consider:

1. Memory-Constrained Learning: Operating within a 256KB RAM budget necessitates models
with minimal memory footprints

2. Computation-Constrained Inference: The 78MHz Cortex-M33 processor requires algorithmic
optimizations to achieve real-time performance

3. Energy-Constrained Execution: Battery-powered applications demand power-aware ML im-
plementations

These constraints fundamentally reshape our approach tomachine learningmodel design, training
methodologies, and deployment strategies.



3.3. Building Our Sine Wave Model in Google Colab 30

3.2.2 Model Compression and Quantization
Central to TinyML is the concept of model compression, which can be formalized as an optimization
problem:

min�′ ℒ(Ą�′ (�),� ) s.t. |�′| ≪ |�|
Where � represents the parameters of the original model, �′ the compressed model parameters, ℒ

the loss function, and Ą�′ (�) the model predictions on input � compared against ground truth � .
Quantization—a key technique in this domain—transforms 昀氀oating-point weights and activations

to reduced-precision integers: �(ý) = round( ýΔ)⋅Δ
Where Δ represents the quantization step size. This transformation reduces both memory require-

ments and computational complexity at the cost of some precision.

3.3 Building Our Sine Wave Model in Google Colab

3.3.1 Generating and Processing the Dataset
For our introductory TinyML example, we’ll create a sine wave predictor that learns to approximate
the sine function. This represents an ideal starting point for several reasons:

1. The sine function is mathematically well-de昀椀ned and bounded
2. The input-output relationship exhibits nonlinearity that requires proper model architecture
3. The implementation can produce visually veri昀椀able results on a microcontroller

Let’s begin by creating aGoogleColab notebook to build and train ourmodel. Open a newnotebook
and start with the following code to generate our training data:

import numpy as np
import math
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
import os

# Generate a uniformly distributed set of random numbers in the range from
# 0 to 2�, which covers a complete sine wave oscillation
SAMPLES = 1000
np.random.seed(1337)
x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)
# Shuffle the values to guarantee they're not in order
np.random.shuffle(x_values)
# Calculate the corresponding sine values
y_values = np.sin(x_values)

# Add a small random number to each y value to simulate noise
y_values += 0.1 * np.random.randn(*y_values.shape)
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# Split into train/validation/test sets
TRAIN_SPLIT = int(0.6 * SAMPLES)
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)
x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])

# Plot our data points
plt.figure(figsize=(10, 6))
plt.scatter(x_train, y_train, label='Training data')
plt.scatter(x_validate, y_validate, label='Validation data')
plt.scatter(x_test, y_test, label='Test data')
plt.legend()
plt.title('Sine Wave with Random Noise')
plt.xlabel('x values')
plt.ylabel('y values (sine of x + noise)')
plt.show()

3.3.2 Constructing and Training the Neural Network Model
Now we’ll construct a simple neural network to learn the sine function:

# Create a model with 2 layers of 16 neurons each
model = tf.keras.Sequential()
# First layer takes a scalar input and feeds it through 16 "neurons"
model.add(layers.Dense(16, activation='relu', input_shape=(1,)))
# Second layer with 16 neurons to capture non-linear relationships
model.add(layers.Dense(16, activation='relu'))
# Final layer is a single neuron for our output value
model.add(layers.Dense(1))
# Compile the model using a standard optimizer and loss function for regression
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

# Display model summary to understand its structure
model.summary()

# Train the model on our data
history = model.fit(x_train, y_train,

epochs=500,
batch_size=16,
validation_data=(x_validate, y_validate),
verbose=1)

# Plot the training and validation loss
plt.figure(figsize=(10, 6))
plt.plot(history.history['loss'], label='Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
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plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

# Plot the training and validation mean absolute error
plt.figure(figsize=(10, 6))
plt.plot(history.history['mae'], label='MAE')
plt.plot(history.history['val_mae'], label='Validation MAE')
plt.title('Training and Validation Mean Absolute Error')
plt.xlabel('Epoch')
plt.ylabel('MAE')
plt.legend()
plt.show()

# Evaluate the model on our test data
test_loss, test_mae = model.evaluate(x_test, y_test)
print(f'Test Loss: {test_loss:.4f}')
print(f'Test MAE: {test_mae:.4f}')

# Generate predictions across the full range for visualization
x_dense = np.linspace(0, 2*math.pi, 200)
y_dense_true = np.sin(x_dense)
y_dense_pred = model.predict(x_dense)

# Plot the true sine curve against our model's predictions
plt.figure(figsize=(10, 6))
plt.plot(x_dense, y_dense_true, 'b-', label='True Sine')
plt.plot(x_dense, y_dense_pred, 'r-', label='Model Prediction')
plt.scatter(x_test, y_test, alpha=0.3, label='Test Data')
plt.title('Sine Wave Prediction')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.legend()
plt.show()

This architecture, though simple, is carefully designed to capture the nonlinear relationship of the
sine function. The ReLU (Recti昀椀ed Linear Unit) activation function is particularly important as it
introduces nonlinearity:

ReLU(þ) = max(0,þ)
We train the model using the mean squared error loss function, which for a regression problem is

de昀椀ned as:

MSE = 1ÿ �∑�=1(ÿ� − ̂ÿ�)2
Where ÿ� represents the actual sine value and ̂ÿ� represents our model’s prediction.
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3.4 Optimizing for Microcontroller Deployment

3.4.1 Model Conversion and Quantization for TensorFlow Lite
To deploy our trained model to the EFR32MG24 microcontroller, we must convert it into a format
suitable for resource-constrained devices:

# Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save the model to disk
with open("sine_model.tflite", "wb") as f:

f.write(tflite_model)

# Convert with quantization for further optimization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]

# Define a generator function that provides our test data's x values
# as a representative dataset
def representative_dataset_generator():

for value in x_test:
yield [np.array(value, dtype=np.float32, ndmin=2)]

converter.representative_dataset = representative_dataset_generator
tflite_model_quantized = converter.convert()

# Save the quantized model to disk
with open("sine_model_quantized.tflite", "wb") as f:

f.write(tflite_model_quantized)

# Print the size reduction achieved through quantization
print(f"Original model size: {len(tflite_model)} bytes")
print(f"Quantized model size: {len(tflite_model_quantized)} bytes")
print(f"Size reduction: {(1 - len(tflite_model_quantized) / len(tflite_model)) * 100:.2f}%")

3.4.2 Converting to C Code for Embedded Systems
For deployment on microcontrollers like the EFR32MG24, we need to convert our quantized model
into a C header 昀椀le that can be directly included in our 昀椀rmware:

# Function to convert the model to a C array
def convert_tflite_to_c_array(tflite_model, array_name):

hex_data = ["0x{:02x}".format(byte) for byte in tflite_model]
c_array = f"const unsigned char {array_name}[] = {{\n"

# Format the hex data into rows
chunk_size = 12
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for i in range(0, len(hex_data), chunk_size):
c_array += " " + ", ".join(hex_data[i:i+chunk_size]) + ",\n"

c_array = c_array[:-2] + "\n};\n"
c_array += f"const unsigned int {array_name}_len = {len(tflite_model)};\n"

return c_array

# Generate the C array for our model
c_array = convert_tflite_to_c_array(tflite_model_quantized, "g_sine_model_data")

# Save to a header file
with open("sine_model_data.h", "w") as f:

f.write("#ifndef SINE_MODEL_DATA_H_\n")
f.write("#define SINE_MODEL_DATA_H_\n\n")
f.write("#include <stdint.h>\n\n")
f.write(c_array)
f.write("\n#endif // SINE_MODEL_DATA_H_\n")

print("C header file generated: sine_model_data.h")

# Download the files
from google.colab import files
files.download("sine_model.tflite")
files.download("sine_model_quantized.tflite")
files.download("sine_model_data.h")

3.5 Deploying with Simplicity Studio and Gecko SDK
Now that we have our trained model in a format suitable for microcontrollers, we’ll implement the
TinyML application using Simplicity Studio and the Gecko SDK. This approach simpli昀椀es develop-
ment by providing a structured framework for EFR32 devices.

3.5.1 Creating a New Project in Simplicity Studio
1. Launch Simplicity Studio and connect your EFR32MG24 development board
2. Select your device in the “Debug Adapters” view
3. Click on “Create New Project” in the Launcher perspective
4. Select “Silicon Labs Project Wizard” and click “Next”
5. Choose “Gecko SDK” as the project type
6. Filter for “example” and select “TensorFlow Lite Micro Example” template
7. Con昀椀gure project settings:

• Name: sine_wave_predictor
• SDK version: Latest version
• Click “Next” and then “Finish”
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3.5.2 Project Structure and Important Files
Simplicity Studio creates a project with the following important 昀椀les:

• app.c: Main application entry point
• sl_t昀氀ite_micro_model.{h,c}: TensorFlow Lite Micro integration
• sl_pwm.{h,c}: PWM control for LED output
• sine_model_data.h: Our model data (to be replaced with our trained model)

3.5.3 Adding Our Trained Model
1. In Simplicity Studio, locate the project’s inc folder
2. Right-click and select “Import” → “General” → “File System”
3. Browse to the location where you saved sine_model_data.h
4. Select the 昀椀le and click “Finish”

3.5.4 Implementing the Application Logic
Now we’ll modify the application code to use our sine wave model. Open app.c and replace its
contents with the following:

/***************************************************************************//**
* @file app.c
* @brief TinyML Sine Wave Predictor application
*******************************************************************************
* # License
* <b>Copyright 2023 Silicon Laboratories Inc. www.silabs.com</b>
*******************************************************************************
*
* SPDX-License-Identifier: Zlib
*
* The licensor of this software is Silicon Laboratories Inc.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
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*
******************************************************************************/
#include "sl_component_catalog.h"
#include "sl_system_init.h"
#include "app.h"
#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
#include "sl_power_manager.h"
#endif
#include "sl_system_process_action.h"

#include <stdio.h>
#include <math.h>

#include "sl_tflite_micro_model.h"
#include "sl_led.h"
#include "sl_pwm.h"
#include "sl_sleeptimer.h"

// Constants for sine wave demonstration
#define INFERENCES_PER_CYCLE 32
#define X_RANGE (2.0f * 3.14159265359f) // 2� radians
#define PWM_FREQUENCY_HZ 10000
#define INFERENCE_INTERVAL_MS 50

// Global variables
static int inference_count = 0;

void app_init(void)
{
// Initialize TFLite model
sl_status_t status = sl_tflite_micro_init();
if (status != SL_STATUS_OK) {
printf("Failed to initialize TensorFlow Lite Micro\n");
return;

}

// Initialize PWM for LED control
sl_pwm_config_t pwm_config = {
.frequency = PWM_FREQUENCY_HZ,
.polarity = SL_PWM_ACTIVE_HIGH

};

sl_pwm_init(SL_PWM_LED0, &pwm_config);

printf("Sine Wave Predictor initialized\n");
}
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void app_process_action(void)
{
// Calculate x value based on our position in the cycle
float position = (float)inference_count / (float)INFERENCES_PER_CYCLE;
float x_val = position * X_RANGE;

// Prepare the input tensor with our x value
float input_data[1] = { x_val };
sl_tflite_micro_tensor_t input_tensor;
sl_status_t status = sl_tflite_micro_get_input_tensor(0, &input_tensor);
if (status != SL_STATUS_OK) {
printf("Failed to get input tensor\n");
return;

}

// Copy our input data to the input tensor
status = sl_tflite_micro_set_tensor_data(&input_tensor, input_data, sizeof(input_data));
if (status != SL_STATUS_OK) {
printf("Failed to set input tensor data\n");
return;

}

// Run inference
status = sl_tflite_micro_invoke();
if (status != SL_STATUS_OK) {
printf("Inference failed\n");
return;

}

// Get the output tensor
sl_tflite_micro_tensor_t output_tensor;
status = sl_tflite_micro_get_output_tensor(0, &output_tensor);
if (status != SL_STATUS_OK) {
printf("Failed to get output tensor\n");
return;

}

// Get the predicted sine value
float predicted_sine = 0.0f;
status = sl_tflite_micro_get_tensor_data(&output_tensor, &predicted_sine, sizeof(predicted_sine));
if (status != SL_STATUS_OK) {
printf("Failed to get output tensor data\n");
return;

}

// Map the sine value (-1 to 1) to PWM duty cycle (0 to 100%)
uint8_t duty_cycle = (uint8_t)((predicted_sine + 1.0f) * 50.0f);
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// Set LED brightness using PWM
sl_pwm_set_duty_cycle(SL_PWM_LED0, duty_cycle);

// Log the values (only every 8th inference to reduce console traffic)
if (inference_count % 8 == 0) {
printf("x: %.3f, predicted sine: %.3f, duty cycle: %d%%\n",

x_val, predicted_sine, duty_cycle);
}

// Increment the inference counter
inference_count++;
if (inference_count >= INFERENCES_PER_CYCLE) {
inference_count = 0;

}

// Add a delay before the next inference
sl_sleeptimer_delay_millisecond(INFERENCE_INTERVAL_MS);

}

3.5.5 Creating the Model Integration File
Create a new 昀椀le called sl_tflite_micro_model.c in the src folder with the following content:

#include "sl_tflite_micro_model.h"
#include "sine_model_data.h"
#include <stdio.h>

// TensorFlow Lite for Microcontrollers components
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"

// Global variables
static tflite::MicroErrorReporter micro_error_reporter;
static tflite::ErrorReporter* error_reporter = &micro_error_reporter;
static const tflite::Model* model = nullptr;
static tflite::MicroInterpreter* interpreter = nullptr;
static TfLiteTensor* input_tensor = nullptr;
static TfLiteTensor* output_tensor = nullptr;

// Create an area of memory for input, output, and intermediate arrays
constexpr int kTensorArenaSize = 8 * 1024;
static uint8_t tensor_arena[kTensorArenaSize];

sl_status_t sl_tflite_micro_init(void)
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{
// Map the model into a usable data structure
model = tflite::GetModel(g_sine_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
printf("Model version mismatch: %d vs %d\n", model->version(), TFLITE_SCHEMA_VERSION);
return SL_STATUS_FAIL;

}

// Create an all operations resolver
static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model
static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize, error_reporter);

interpreter = &static_interpreter;

// Allocate memory for all tensors
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
printf("AllocateTensors() failed\n");
return SL_STATUS_ALLOCATION_FAILED;

}

// Get pointers to the model's input and output tensors
input_tensor = interpreter->input(0);
output_tensor = interpreter->output(0);

// Check that input and output tensors are the expected size and type
if (input_tensor->dims->size != 2 || input_tensor->dims->data[0] != 1 ||

input_tensor->dims->data[1] != 1 || input_tensor->type != kTfLiteFloat32) {
printf("Unexpected input tensor format\n");
return SL_STATUS_INVALID_PARAMETER;

}

if (output_tensor->dims->size != 2 || output_tensor->dims->data[0] != 1 ||
output_tensor->dims->data[1] != 1 || output_tensor->type != kTfLiteFloat32) {

printf("Unexpected output tensor format\n");
return SL_STATUS_INVALID_PARAMETER;

}

printf("TensorFlow Lite Micro initialized successfully\n");
return SL_STATUS_OK;

}

sl_status_t sl_tflite_micro_get_input_tensor(uint8_t index, sl_tflite_micro_tensor_t* tensor)
{

if (interpreter == nullptr || index >= interpreter->inputs_size()) {
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return SL_STATUS_INVALID_PARAMETER;
}

tensor->tensor = interpreter->input(index);
return SL_STATUS_OK;

}

sl_status_t sl_tflite_micro_get_output_tensor(uint8_t index, sl_tflite_micro_tensor_t* tensor)
{

if (interpreter == nullptr || index >= interpreter->outputs_size()) {
return SL_STATUS_INVALID_PARAMETER;

}

tensor->tensor = interpreter->output(index);
return SL_STATUS_OK;

}

sl_status_t sl_tflite_micro_set_tensor_data(sl_tflite_micro_tensor_t* tensor,
const void* data,
size_t size)

{
if (tensor == nullptr || tensor->tensor == nullptr || data == nullptr) {

return SL_STATUS_NULL_POINTER;
}

// Size check based on tensor type and dims
size_t tensor_size = 1;
for (int i = 0; i < tensor->tensor->dims->size; i++) {
tensor_size *= tensor->tensor->dims->data[i];

}

if (tensor->tensor->type == kTfLiteFloat32) {
tensor_size *= sizeof(float);

} else if (tensor->tensor->type == kTfLiteInt8) {
tensor_size *= sizeof(int8_t);

} else if (tensor->tensor->type == kTfLiteUInt8) {
tensor_size *= sizeof(uint8_t);

} else {
return SL_STATUS_NOT_SUPPORTED;

}

if (size > tensor_size) {
return SL_STATUS_WOULD_OVERFLOW;

}

// Copy the data to the tensor
memcpy(tensor->tensor->data.raw, data, size);
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return SL_STATUS_OK;
}

sl_status_t sl_tflite_micro_get_tensor_data(sl_tflite_micro_tensor_t* tensor,
void* data,
size_t size)

{
if (tensor == nullptr || tensor->tensor == nullptr || data == nullptr) {

return SL_STATUS_NULL_POINTER;
}

// Size check based on tensor type and dims
size_t tensor_size = 1;
for (int i = 0; i < tensor->tensor->dims->size; i++) {
tensor_size *= tensor->tensor->dims->data[i];

}

if (tensor->tensor->type == kTfLiteFloat32) {
tensor_size *= sizeof(float);

} else if (tensor->tensor->type == kTfLiteInt8) {
tensor_size *= sizeof(int8_t);

} else if (tensor->tensor->type == kTfLiteUInt8) {
tensor_size *= sizeof(uint8_t);

} else {
return SL_STATUS_NOT_SUPPORTED;

}

if (size > tensor_size) {
return SL_STATUS_WOULD_OVERFLOW;

}

// Copy the data from the tensor
memcpy(data, tensor->tensor->data.raw, size);
return SL_STATUS_OK;

}

sl_status_t sl_tflite_micro_invoke(void)
{

if (interpreter == nullptr) {
return SL_STATUS_NOT_INITIALIZED;

}

TfLiteStatus status = interpreter->Invoke();
if (status != kTfLiteOk) {

return SL_STATUS_FAIL;
}
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return SL_STATUS_OK;
}

Now, create the header 昀椀le sl_tflite_micro_model.h in the inc folder:

#ifndef SL_TFLITE_MICRO_MODEL_H
#define SL_TFLITE_MICRO_MODEL_H

#include "sl_status.h"
#include <stdint.h>
#include <stddef.h>

#ifdef __cplusplus
extern "C" {
#endif

// Forward declarations from TensorFlow Lite
#ifdef __cplusplus
namespace tflite {
struct TfLiteTensor;
} // namespace tflite
typedef struct tflite::TfLiteTensor TfLiteTensor;
#else
typedef struct TfLiteTensor TfLiteTensor;
#endif

// Tensor structure
typedef struct {
TfLiteTensor* tensor;

} sl_tflite_micro_tensor_t;

/**
* @brief Initialize TensorFlow Lite Micro with the sine model
*
* @return sl_status_t SL_STATUS_OK if successful
*/
sl_status_t sl_tflite_micro_init(void);

/**
* @brief Get an input tensor by index
*
* @param index Index of the input tensor
* @param tensor Pointer to the tensor structure to fill
* @return sl_status_t SL_STATUS_OK if successful
*/
sl_status_t sl_tflite_micro_get_input_tensor(uint8_t index, sl_tflite_micro_tensor_t* tensor);

/**



Chapter 3. The “Hello World” of TinyML 43

* @brief Get an output tensor by index
*
* @param index Index of the output tensor
* @param tensor Pointer to the tensor structure to fill
* @return sl_status_t SL_STATUS_OK if successful
*/
sl_status_t sl_tflite_micro_get_output_tensor(uint8_t index, sl_tflite_micro_tensor_t* tensor);

/**
* @brief Set data to a tensor
*
* @param tensor Pointer to the tensor
* @param data Pointer to the data to copy
* @param size Size of the data in bytes
* @return sl_status_t SL_STATUS_OK if successful
*/
sl_status_t sl_tflite_micro_set_tensor_data(sl_tflite_micro_tensor_t* tensor,

const void* data,
size_t size);

/**
* @brief Get data from a tensor
*
* @param tensor Pointer to the tensor
* @param data Pointer to the buffer to receive the data
* @param size Size of the buffer in bytes
* @return sl_status_t SL_STATUS_OK if successful
*/
sl_status_t sl_tflite_micro_get_tensor_data(sl_tflite_micro_tensor_t* tensor,

void* data,
size_t size);

/**
* @brief Run inference using the TensorFlow Lite model
*
* @return sl_status_t SL_STATUS_OK if successful
*/
sl_status_t sl_tflite_micro_invoke(void);

#ifdef __cplusplus
}
#endif

#endif // SL_TFLITE_MICRO_MODEL_H

3.5.6 Building and Flashing the Application
1. In Simplicity Studio, right-click on the project and select “Build Project”
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2. After successful compilation, right-click again and select “Run As” → “Silicon Labs ARM Pro-
gram”

3. The application will be 昀氀ashed to your EFR32MG24 device and start running

3.5.7 Observing the Results
Once your application is running on the EFR32MG24 device:

1. The LED will pulse with brightness that follows the sine wave pattern
2. Open the Serial Console in Simplicity Studio to view debug output
3. You’ll see logs showing the input value, predicted sine value, and the corresponding LED duty

cycle

3.6 How it Works: Understanding the Implementation
Our TinyML sine wave predictor consists of several key components:

1. Model Training and Conversion: Using Google Colab, we trained a small neural network to
approximate the sine function and converted it to TF Lite format, then to a C array.

2. TensorFlow Lite Micro Integration: We’ve implemented a simple wrapper around TF Lite Mi-
cro’s C++ API, providing a clean C interface for our application.

3. Application Logic: The main application loop:
• Calculates an x value based on where we are in the cycle
• Feeds this value into the model
• Retrieves the predicted sine value
• Maps the prediction to LED brightness via PWM

4. Visual Output: The LED brightness follows a sine wave pattern, providing visual con昀椀rmation
that our model is working correctly.

3.7 Extending the TinyML Application
Now that we have our basic “Hello World” TinyML application running, there are several ways we
can extend and enhance it:

3.7.1 1. Adding Multiple LED Support
For deviceswithmultiple LEDs, we can createmore interesting visual patterns by controllingmultiple
LEDs based on di昀昀erent phases of the sine wave:

// In app.c, add phase offsets for each LED
#define LED_COUNT 4 // Assuming 4 available LEDs
const float phase_offsets[LED_COUNT] = {
0.0f, // LED0: No phase offset
0.5f * X_RANGE / 4.0f, // LED1: 45 degrees offset
X_RANGE / 4.0f, // LED2: 90 degrees offset
1.5f * X_RANGE / 4.0f // LED3: 135 degrees offset

};
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// Then in app_process_action(), add a loop to control all LEDs
for (int i = 0; i < LED_COUNT; i++) {
// Calculate offset x value for this LED
float led_x_val = x_val + phase_offsets[i];
if (led_x_val >= X_RANGE) {
led_x_val -= X_RANGE; // Wrap around to stay in range

}

// Prepare input tensor with our x value
float input_data[1] = { led_x_val };
sl_tflite_micro_tensor_t input_tensor;
status = sl_tflite_micro_get_input_tensor(0, &input_tensor);
if (status != SL_STATUS_OK) continue;

// Set tensor data, invoke model, and get output as before...

// Set corresponding LED brightness
uint8_t duty_cycle = (uint8_t)((predicted_sine + 1.0f) * 50.0f);
sl_pwm_set_duty_cycle(i, duty_cycle); // Assuming LED PWM instances are indexed

}

3.7.2 2. Adding LCD Display Support
If your EFR32MG24 development board includes an LCD display, you can visualize the sine wave
more directly:

// In app.c, add LCD-related includes
#include "sl_glib.h"
#include "sl_simple_lcd.h"

// Add LCD dimensions and buffers
#define LCD_WIDTH 128
#define LCD_HEIGHT 64
#define HISTORY_LENGTH LCD_WIDTH
static float sine_history[HISTORY_LENGTH];
static int history_index = 0;

// Initialize the LCD in app_init()
sl_simple_lcd_init();
sl_glib_init();
// Clear history buffer
for (int i = 0; i < HISTORY_LENGTH; i++) {
sine_history[i] = 0.0f;

}

// In app_process_action(), after getting the predicted sine:
// Store in history buffer
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sine_history[history_index] = predicted_sine;
history_index = (history_index + 1) % HISTORY_LENGTH;

// Every few inferences, update the display
if (inference_count % 4 == 0) {
GLIB_Context_t context;
sl_glib_get_context(&context);

// Clear display
GLIB_clear(&context);

// Draw x and y axes
GLIB_drawLineH(&context, 0, LCD_WIDTH-1, LCD_HEIGHT/2);
GLIB_drawLineV(&context, 0, 0, LCD_HEIGHT-1);

// Draw the sine wave
for (int i = 0; i < HISTORY_LENGTH-1; i++) {
int x1 = i;
int y1 = (int)(LCD_HEIGHT/2 - (sine_history[(history_index + i) % HISTORY_LENGTH] * LCD_HEIGHT/4));
int x2 = i + 1;
int y2 = (int)(LCD_HEIGHT/2 - (sine_history[(history_index + i + 1) % HISTORY_LENGTH] * LCD_HEIGHT/4));
GLIB_drawLine(&context, x1, y1, x2, y2);

}

// Update display
sl_glib_update_display();

}

3.7.3 3. Implementing Power Optimization

To make our TinyML application more power-e昀케cient for battery-powered operation, we can add
sleep modes between inferences:

// Replace the fixed delay with sleep mode
// Instead of: sl_sleeptimer_delay_millisecond(INFERENCE_INTERVAL_MS);

#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
// Schedule next wakeup
sl_sleeptimer_tick_t ticks = sl_sleeptimer_ms_to_tick(INFERENCE_INTERVAL_MS);
sl_power_manager_schedule_wakeup(ticks, NULL, NULL);

// Enter sleep mode
sl_power_manager_sleep();

#else
// Fall back to delay if power manager isn't available
sl_sleeptimer_delay_millisecond(INFERENCE_INTERVAL_MS);

#endif
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3.7.4 4. Enhanced User Interface with Buttons
We can use the buttons on the development board to control aspects of the application:

// Include button support
#include "sl_button.h"
#include "sl_simple_button.h"
#include "sl_simple_button_btn0_config.h"

// Add state variables
static bool paused = false;
static float speed_factor = 1.0f;

// In app_init, initialize buttons
sl_button_init(&sl_button_btn0);

// Check button state in app_process_action
if (sl_button_get_state(&sl_button_btn0) == SL_SIMPLE_BUTTON_PRESSED) {

// Toggle pause state
paused = !paused;
printf("Application %s\n", paused ? "paused" : "resumed");

}

// Only update inference_count if not paused
if (!paused) {
inference_count += 1;
if (inference_count >= INFERENCES_PER_CYCLE) inference_count = 0;

}

3.7.5 5. Performance Pro昀椀ling and Optimization
To understand and optimize the performance of our TinyML application, we can add timingmeasure-
ments:

// Add profiling includes
#include "em_cmu.h"
#include "em_timer.h"

// Setup timer for profiling in app_init()
CMU_ClockEnable(cmuClock_TIMER1, true);
TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;
TIMER_Init(TIMER1, &timerInit);

// In app_process_action(), measure inference time
// Reset timer
TIMER_CounterSet(TIMER1, 0);

// Start timer
TIMER_Enable(TIMER1, true);
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// Run inference
status = sl_tflite_micro_invoke();

// Stop timer and read value
TIMER_Enable(TIMER1, false);
uint32_t ticks = TIMER_CounterGet(TIMER1);

// Convert ticks to microseconds (depends on timer clock)
uint32_t us = ticks / (CMU_ClockFreqGet(cmuClock_TIMER1) / 1000000);

// Log every Nth inference
if (inference_count % 10 == 0) {
printf("Inference time: %lu microseconds\n", us);

}

3.8 Building TinyML Applications with the Gecko SDK
Compared to the traditional TinyML approach with direct TensorFlow Lite for Microcontrollers inte-
gration, the Gecko SDK approach o昀昀ers several advantages for EFR32 developers:

3.8.1 Simpli昀椀ed Project Setup
The Gecko SDK provides a structured approach to project creation with built-in TinyML support:

1. Project Templates: Simplicity Studio’s project wizard includes TinyML templates that set up
the necessary directory structure, build con昀椀guration, and initial code.

2. Integrated Build System: The SDK handles compiler 昀氀ags, library dependencies, and linking,
eliminating the need for custom Make昀椀les.

3. Hardware Abstraction Layer (HAL): The SDK provides hardware-speci昀椀c drivers and APIs for
peripherals like PWM, GPIOs, and timers, making it easier to integrate TinyML with device
hardware.

3.8.2 Streamlined Development Work昀氀ow
The development work昀氀ow with Simplicity Studio and Gecko SDK is straightforward:

1. Model Training: Use Google Colab or TensorFlow on your computer to train and convert mod-
els.

2. Project Creation: Launch Simplicity Studio, select the TensorFlow LiteMicro example template,
and create a new project.

3. Model Integration: Import your model header 昀椀le into the project.
4. Application Logic: Write code in C to initialize the model, prepare inputs, run inference, and

process outputs.
5. Build and Flash: Use Simplicity Studio’s integrated tools to compile the code and 昀氀ash it to

your device.
6. Debug and Monitor: The Serial Console and Energy Pro昀椀ler tools help monitor application

behavior and optimize performance.
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3.8.3 Hardware-Speci昀椀c Optimizations
The Gecko SDK includes optimizations speci昀椀cally for the EFR32 platform:

1. Memory Optimization: Memory management is tuned for the EFR32’s memory architecture.
2. Power Management: Integration with the Energy Management Unit (EMU) allows for 昀椀ne-

grained control over active, sleep, and deep sleep states.
3. Peripheral Control: Direct access to hardware accelerators and peripherals that can enhance

TinyML performance.

3.9 Conclusion
The sine wave predictor represents an elegant “Hello World” example of TinyML deployment on
the EFR32MG24 platform. While seemingly simple, this implementation encompasses all the key
elements of machine learning on microcontrollers:

1. Model design with consideration for resource constraints
2. Training and evaluation on standard datasets
3. Quantization and optimization for embedded deployment
4. Integration with Simplicity Studio and Gecko SDK
5. Hardware output integration via GPIO and PWM capabilities

Through this foundation, developers can extend to more complex TinyML applications on the
EFR32MG24, such as sensor fusion, predictive maintenance, anomaly detection, and keyword
spotting—all within a power envelope suitable for long-term battery-powered operation.

The techniques demonstrated here—model quantization, C code generation, and deployment with
Simplicity Studio—provide a template that can be adapted for more sophisticated machine learning
tasks, enabling a new class of intelligent edge devices based on the EFR32MG24 platform.
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Chapter 4

Building a TinyML Application

In the previous chapter, we trained a neural network model to predict sine wave values and pre-
pared it for deployment on an EFR32MG24 microcontroller. Now we’ll build a complete application
around this model and deploy it to the hardware. This chapter focuses on the practical aspects of im-
plementing TinyML using Silicon Labs’ Gecko SDK and Simplicity Studio rather than the traditional
TensorFlow Lite for Microcontrollers approach.

4.1 Understanding the Gecko SDK Approach to TinyML
The Gecko SDK provides a structured approach to embedded development speci昀椀cally optimized for
Silicon Labs’ microcontrollers. This o昀昀ers several advantages over the more generic TinyML imple-
mentations:

1. Pre-integrated Components: The SDK includes optimized TensorFlow Lite Micro components
already con昀椀gured for EFR32 devices

2. Hardware Abstraction Layer: Direct integration with EFR32 peripherals through a consistent
API

3. Project Templates: Simplicity Studio provides starting points for TinyML applications
4. Advanced Tooling: Debugging, energy pro昀椀ling, and con昀椀guration tools are built into the de-

velopment environment

4.2 Setting Up Your Development Environment
Before we begin building our application, ensure you have the following tools installed:

1. Simplicity Studio 5: Download and install from Silicon Labs’ website
2. Gecko SDK: The latest version will be installed through Simplicity Studio
3. J-Link Drivers: These should be installed with Simplicity Studio
4. EFR32MG24 Development Board: Connect this to your computer via USB

4.3 Creating a New Project in Simplicity Studio
Let’s start by creating a TinyML project in Simplicity Studio:

1. Launch Simplicity Studio 5

https://www.silabs.com/developers/simplicity-studio
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2. In the Launcher perspective, click on your connected EFR32MG24 device
3. Click “Create New Project” in the “Overview” tab
4. Select “Silicon Labs Project Wizard” and click “NEXT”
5. In the SDK Selection dialog, ensure the latest Gecko SDK is selected and click “NEXT”
6. In the Project Generation dialog:

• Filter for “example” in the search box
• Select “TensorFlow Lite Micro Example”
• Click “NEXT”

7. Con昀椀gure your project:
• Name: sine_wave_predictor
• Keep the default location
• Click “FINISH”

Simplicity Studio will generate a project with the necessary components for a TinyML application.
Let’s explore the project structure before making our modi昀椀cations.

4.4 Exploring the Project Structure
The generated project includes several important directories and 昀椀les:

• con昀椀g/: Contains hardware con昀椀guration 昀椀les for your speci昀椀c board
• gecko_sdk/: The Gecko SDK source code, including TensorFlow Lite Micro
• autogen/: Auto-generated initialization code for the device
• app.c: Your application’s main source 昀椀le
• app.h: Header 昀椀le for your application

The TensorFlow Lite Micro example comes with a sample model that classi昀椀es motion patterns.
We’ll replace this with our sine wave model.

4.5 Importing the Sine Wave Model
First, let’s import the sine model data that we generated in the previous chapter:

1. Right-click on the project in the “Project Explorer” view
2. Select “Import” → “General” → “File System”
3. Browse to the location where you saved sine_model_data.h
4. Select the 昀椀le and click “Finish”

The model data will be added to your project. Now let’s modify the application code to use our
sine wave model.

4.6 Implementing the Application
Let’s replace the content of app.c with our sine wave prediction application code. Open app.c and
replace its contents with the following:
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/***************************************************************************//**
* @file app.c
* @brief TinyML Sine Wave Predictor application
*******************************************************************************
* # License
* <b>Copyright 2023 Silicon Laboratories Inc. www.silabs.com</b>
*******************************************************************************
*
* SPDX-License-Identifier: Zlib
*
* The licensor of this software is Silicon Laboratories Inc.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
******************************************************************************/
#include "sl_component_catalog.h"
#include "sl_system_init.h"
#include "app.h"
#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
#include "sl_power_manager.h"
#endif
#include "sl_system_process_action.h"

/* Additional includes for our application */
#include <stdio.h>
#include <math.h>

/* Include TensorFlow Lite components */
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
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/* Include our model data */
#include "sine_model_data.h"

/* Include hardware control components */
#include "sl_led.h"
#include "sl_simple_led_instances.h"
#include "sl_sleeptimer.h"

/* Constants for sine wave demonstration */
#define INFERENCES_PER_CYCLE 32
#define X_RANGE (2.0f * 3.14159265359f) /* 2� radians */
#define INFERENCE_INTERVAL_MS 50

/* Global variables for TensorFlow Lite model */
static tflite::MicroErrorReporter micro_error_reporter;
static tflite::ErrorReporter* error_reporter = &micro_error_reporter;
/* We'll use the C version of TensorFlow Lite Micro API */
static tflite::MicroInterpreter* interpreter = nullptr;
static TfLiteTensor* input = nullptr;
static TfLiteTensor* output = nullptr;

/* Create an area of memory for input, output, and intermediate arrays */
#define TENSOR_ARENA_SIZE (10 * 1024)
static uint8_t tensor_arena[TENSOR_ARENA_SIZE];

/* Application state variables */
static int inference_count = 0;

/***************************************************************************//**
* Initialize application.
******************************************************************************/
void app_init(void)
{
/* Map the model into a usable data structure */
model = tflite::GetModel(g_sine_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(

"Model provided is schema version %d not equal "
"to supported version %d.\n",
model->version(), TFLITE_SCHEMA_VERSION);

return;
}

/* This pulls in all the operation implementations we need */
static tflite::AllOpsResolver resolver;

/* Build an interpreter to run the model with */
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static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, TENSOR_ARENA_SIZE, error_reporter);

interpreter = &static_interpreter;

/* Allocate memory from the tensor_arena for the model's tensors */
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
error_reporter->Report("AllocateTensors() failed");
return;

}

/* Obtain pointers to the model's input and output tensors */
input = interpreter->input(0);
output = interpreter->output(0);

/* Check that input tensor dimensions are as expected */
if (input->dims->size != 2 || input->dims->data[0] != 1 ||

input->dims->data[1] != 1 || input->type != kTfLiteFloat32) {
error_reporter->Report("Unexpected input tensor dimensions or type");
return;

}

/* Initialize LED */
sl_led_init(SL_SIMPLE_LED_INSTANCE(0));

/* Print initialization message */
printf("Sine Wave Predictor initialized successfully!\n");
printf("Model input dims: %d x %d, type: %d\n",

input->dims->data[0], input->dims->data[1], input->type);
}

/***************************************************************************//**
* App ticking function.
******************************************************************************/
void app_process_action(void)
{
/* Calculate an x value to feed into the model based on current inference count */
float position = (float)(inference_count) / (float)(INFERENCES_PER_CYCLE);
float x_val = position * X_RANGE;

/* Set the input tensor with our calculated x value */
input->data.f[0] = x_val;

/* Run inference, and report any error */
TfLiteStatus invoke_status = TF_MicroInterpreter_Invoke(interpreter);
if (invoke_status != kTfLiteOk) {
printf("Invoke failed on x_val: %f\n", (double)x_val);
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return;
}

/* Read the predicted y value from the model's output tensor */
float y_val = output->data.f[0];

/* Map the sine output (-1 to 1) to LED brightness
* For simplicity, we'll just turn the LED on when the value is positive
* and off when it's negative. For PWM control, you would need to
* configure a PWM peripheral. */

if (y_val > 0) {
sl_led_turn_on(SL_SIMPLE_LED_INSTANCE(0));

} else {
sl_led_turn_off(SL_SIMPLE_LED_INSTANCE(0));

}

/* Log every 4th inference to avoid flooding the console */
if (inference_count % 4 == 0) {
printf("x_value: %f, predicted_sine: %f\n", (double)x_val, (double)y_val);

}

/* Increment the inference_count, and reset it if we have reached
* the total number per cycle */
inference_count += 1;
if (inference_count >= INFERENCES_PER_CYCLE) inference_count = 0;

/* Add a delay between inferences */
sl_sleeptimer_delay_millisecond(INFERENCE_INTERVAL_MS);

}

This application will: 1. Initialize the TensorFlow Lite Micro interpreter with our sine model 2. Set
up an LED for output 3. In each loop iteration: - Calculate an x value within our 0 to 2π range - Run
inference to get the predicted sine value - Toggle the LED based on whether the sine value is positive
or negative - Log the values to the console - Increment the inference counter

4.7 Enhancing Output with PWM Control
The basic application just toggles an LED, but we can create a more interesting visualization by con-
trolling LED brightness with PWM. Let’s create a PWM component for our project:

1. Right-click on your project in the Project Explorer
2. Select “Con昀椀gure Project”
3. Click on “SOFTWARE COMPONENTS”
4. In the search box, type “PWM”
5. Find “PWM Driver” → “Simple PWM” and click “Install”
6. Click “Force Install” if prompted
7. Click “DONE” to save the con昀椀guration
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Now,modify the application code to use PWM for LED brightness control. Replace the LED control
section in app_process_action() with:

/* Map the sine output (-1 to 1) to PWM duty cycle (0 to 100%) */
uint8_t duty_cycle = (uint8_t)((y_val + 1.0f) * 50.0f);

/* Set LED brightness using PWM */
sl_pwm_set_duty_cycle(SL_PWM_INSTANCE(0), duty_cycle);

Also, add the PWM initialization in the app_init() function after the LED initialization:

/* Initialize PWM for LED brightness control */
sl_pwm_config_t pwm_config = {

.frequency = 10000, /* 10 kHz PWM frequency */

.polarity = SL_PWM_ACTIVE_HIGH
};
sl_pwm_init(SL_PWM_INSTANCE(0), &pwm_config);

Don’t forget to include the PWM header at the top of the 昀椀le:

#include "sl_pwm.h"
#include "sl_simple_pwm_instances.h"

4.8 Building and Flashing the Application
Now let’s build and 昀氀ash our application to the EFR32MG24 board:

1. Right-click on your project in the Project Explorer
2. Select “Build Project”
3. Once the build completes successfully, right-click again on the project
4. Select “Run As” → “Silicon Labs ARM Program”

Simplicity Studio will compile your code, 昀氀ash it to the device, and start execution.

4.9 Debugging and Monitoring
To monitor the output of your application:

1. In Simplicity Studio, go to the “Debug Adapters” view
2. Right-click on your connected device and select “Launch Console”
3. In the console dialog, select “Serial 1” and click “OK”

You should now see the application’s output messages showing x values and predicted sine values.

4.10 Optimizing TinyML Performance

4.10.1 Memory Optimization
TinyML applications on microcontrollers must be memory-e昀케cient. Let’s look at ways to optimize
memory usage:
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1. Tensor Arena Size: Reduce the TENSOR_ARENA_SIZE to the minimum required. Try starting
with 10KB and reducing it incrementally:

#define TENSOR_ARENA_SIZE (10 * 1024) /* Start with 10KB */

You can determine the minimum required size by adding debug output:

/* Add this after interpreter->AllocateTensors() in app_init() */
size_t used_bytes = interpreter->arena_used_bytes();
printf("Model uses %d bytes of tensor arena\n", (int)used_bytes);

2. Selective Op Resolution: Instead of using AllOpsResolver, create a custom resolver with only
the operations needed:

/* Replace AllOpsResolver with this */
static tflite::MicroMutableOpResolver<4> resolver;
resolver.AddFullyConnected();
resolver.AddRelu();
resolver.AddAdd();
resolver.AddMul();

4.10.2 Power Optimization
For battery-powered applications, power e昀케ciency is critical:

1. Sleep Between Inferences: Replace the simple delay with a power-e昀케cient sleep:

/* Replace sl_sleeptimer_delay_millisecond() with: */
#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
/* Schedule next wakeup */
sl_sleeptimer_tick_t ticks = sl_sleeptimer_ms_to_tick(INFERENCE_INTERVAL_MS);
sl_power_manager_schedule_wakeup(ticks, NULL, NULL);

/* Enter sleep mode */
sl_power_manager_sleep();

#else
/* Fall back to delay if power manager isn't available */
sl_sleeptimer_delay_millisecond(INFERENCE_INTERVAL_MS);

#endif

2. Measurement with Energy Pro昀椀ler: Simplicity Studio includes an Energy Pro昀椀ler tool to mea-
sure power consumption:

• Connect your board with the Advanced Energy Monitor (AEM)
• In Simplicity Studio, go to Tools → Energy Pro昀椀ler
• Start a capture while your application is running
• Analyze current consumption during inference and sleep periods
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4.10.3 Timing Performance
To measure inference time:

/* Add these includes */
#include "em_cmu.h"
#include "em_timer.h"

/* Initialize timer in app_init() */
CMU_ClockEnable(cmuClock_TIMER0, true);
TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;
TIMER_Init(TIMER0, &timerInit);

/* In app_process_action(), surround the inference with timing code */
/* Reset and start timer */
TIMER_CounterSet(TIMER0, 0);
TIMER_Enable(TIMER0, true);

/* Run inference */
TfLiteStatus invoke_status = interpreter->Invoke();

/* Stop timer and read counter */
TIMER_Enable(TIMER0, false);
uint32_t ticks = TIMER_CounterGet(TIMER0);

/* Convert ticks to microseconds */
uint32_t us = ticks / (CMU_ClockFreqGet(cmuClock_TIMER0) / 1000000);

/* Log timing information */
if (inference_count % 10 == 0) {
printf("Inference took %lu microseconds\n", us);

}

4.11 Adding User Interaction with Buttons
We can make our application more interactive by using buttons to control its behavior:

1. Add a button component to your project:
• Right-click on your project and select “Con昀椀gure Project”
• Go to “SOFTWARE COMPONENTS”
• Search for “button” and install “Simple Button” components

2. Modify your code to handle button presses:

/* Include button headers */
#include "sl_button.h"
#include "sl_simple_button_instances.h"
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/* In app_init() */
/* Initialize buttons */
sl_button_init(SL_SIMPLE_BUTTON_INSTANCE(0));

/* In app_process_action(), check for button press */
if (sl_button_get_state(SL_SIMPLE_BUTTON_INSTANCE(0)) == SL_SIMPLE_BUTTON_PRESSED) {

/* Toggle between normal speed and double speed */
static bool fast_mode = false;
fast_mode = !fast_mode;

/* Update the inference interval */
inference_interval_ms = fast_mode ? 25 : 50;

printf("Speed set to %s\n", fast_mode ? "FAST" : "NORMAL");
}

4.12 Enhanced Visualization with LCD (if available)
If your development board has an LCD display, you can create more sophisticated visualizations:

1. Add the LCD components to your project:
• In the “Con昀椀gure Project” dialog, search for “lcd”
• Install the “GLIB Graphics Library” and “Simple LCD”

2. Modify your code to display the sine wave on the LCD:

/* Include LCD headers */
#include "sl_glib.h"
#include "sl_simple_lcd.h"

/* In app_init() */
/* Initialize LCD */
sl_simple_lcd_init();
sl_glib_initialize();

/* Define a buffer to store recent sine wave values */
#define HISTORY_SIZE 128
static float sine_history[HISTORY_SIZE];
static int history_index = 0;

/* Initialize history buffer */
for (int i = 0; i < HISTORY_SIZE; i++) {
sine_history[i] = 0.0f;

}

/* In app_process_action(), after getting the prediction */
/* Store the prediction in the history buffer */
sine_history[history_index] = y_val;
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history_index = (history_index + 1) % HISTORY_SIZE;

/* Every 8th inference, update the LCD */
if (inference_count % 8 == 0) {
GLIB_Context_t context;
sl_glib_get_context(&context);

/* Clear the display */
GLIB_clear(&context);

/* Draw axes */
int mid_y = context.height / 2;
GLIB_drawLineH(&context, 0, context.width - 1, mid_y);

/* Draw the sine wave */
for (int i = 0; i < HISTORY_SIZE - 1; i++) {
int x1 = i;
int y1 = mid_y - (int)(sine_history[(history_index + i) % HISTORY_SIZE] * mid_y * 0.8f);
int x2 = i + 1;
int y2 = mid_y - (int)(sine_history[(history_index + i + 1) % HISTORY_SIZE] * mid_y * 0.8f);

GLIB_drawLine(&context, x1, y1, x2, y2);
}

/* Update the display */
GLIB_drawString(&context, "Sine Wave Predictor", 0, 0, GLIB_ALIGN_CENTER, 0);
GLIB_update(&context);

}

4.13 Creating a Custom Component for TinyML
Tomake your TinyML codemore reusable, consider creating a customGecko SDK component. Here’s
a simple approach:

1. Create a header 昀椀le sl_tflite_sine_predictor.h:

#ifndef SL_TFLITE_SINE_PREDICTOR_H
#define SL_TFLITE_SINE_PREDICTOR_H

#include "sl_status.h"
#include <stdint.h>

#ifdef __cplusplus
#ifdef __cplusplus
extern "C" {
#endif
#endif
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/**
* @brief Initialize the TinyML sine predictor
*
* @return sl_status_t SL_STATUS_OK on success
*/
sl_status_t sl_tflite_sine_predictor_init(void);

/**
* @brief Run inference with a given x value
*
* @param x_val Input value in range [0, 2�]
* @param y_val Pointer to store the predicted sine value
* @return sl_status_t SL_STATUS_OK on success
*/
sl_status_t sl_tflite_sine_predictor_predict(float x_val, float* y_val);

#ifdef __cplusplus
}
#endif

#endif /* SL_TFLITE_SINE_PREDICTOR_H */

2. Create an implementation 昀椀le sl_tflite_sine_predictor.c:

#include "sl_tflite_sine_predictor.h"
#include "sine_model_data.h"
#include <string.h>

/* TensorFlow Lite components */
#include "third_party/tflite-micro/tensorflow/lite/micro/kernels/micro_ops.h"
#include "third_party/tflite-micro/tensorflow/lite/micro/micro_error_reporter.h"
#include "third_party/tflite-micro/tensorflow/lite/micro/micro_interpreter.h"
#include "third_party/tflite-micro/tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "third_party/tflite-micro/tensorflow/lite/schema/schema_generated.h"
#include "third_party/tflite-micro/tensorflow/lite/version.h"

/* Static variables for TensorFlow Lite model - C compatible structure */
static TF_MicroErrorReporter micro_error_reporter;
static TF_MicroInterpreter* interpreter = NULL;
static TfLiteTensor* input = NULL;
static TfLiteTensor* output = NULL;

/* Create an area of memory for input, output, and intermediate arrays */
#define TENSOR_ARENA_SIZE (10 * 1024)
static uint8_t tensor_arena[TENSOR_ARENA_SIZE];

/* C implementation for initialization */
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sl_status_t sl_tflite_sine_predictor_init(void)
{
/* Map the model into a usable data structure */
const TfLiteModel* model = TfLiteModelCreate(g_sine_model_data, g_sine_model_data_len);
if (model == NULL) {

return SL_STATUS_FAIL;
}

/* Initialize error reporter */
TF_MicroErrorReporter_Init(&micro_error_reporter);

/* Create an operation resolver with the operations we need */
static TfLiteMicroMutableOpResolver op_resolver;
TfLiteMicroMutableOpResolver_Init(&op_resolver);

/* Add the operations needed for our model */
TfLiteMicroMutableOpResolver_AddFullyConnected(&op_resolver);
TfLiteMicroMutableOpResolver_AddRelu(&op_resolver);
TfLiteMicroMutableOpResolver_AddMul(&op_resolver);
TfLiteMicroMutableOpResolver_AddAdd(&op_resolver);

/* Build an interpreter to run the model */
static TF_MicroInterpreter static_interpreter;
TF_MicroInterpreter_Init(

&static_interpreter, model, &op_resolver, tensor_arena,
TENSOR_ARENA_SIZE, &micro_error_reporter);

interpreter = &static_interpreter;

/* Allocate memory from the tensor_arena for the model's tensors */
TfLiteStatus allocate_status = TF_MicroInterpreter_AllocateTensors(interpreter);
if (allocate_status != kTfLiteOk) {

return SL_STATUS_ALLOCATION_FAILED;
}

/* Obtain pointers to the model's input and output tensors */
input = TF_MicroInterpreter_GetInputTensor(interpreter, 0);
output = TF_MicroInterpreter_GetOutputTensor(interpreter, 0);

if (input == NULL || output == NULL) {
return SL_STATUS_FAIL;

}

return SL_STATUS_OK;
}

/* C implementation for prediction */
sl_status_t sl_tflite_sine_predictor_predict(float x_val, float* y_val)
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{
if (interpreter == NULL || input == NULL || output == NULL || y_val == NULL) {

return SL_STATUS_INVALID_STATE;
}

/* Set the input tensor data */
input->data.f[0] = x_val;

/* Run inference */
TfLiteStatus invoke_status = TF_MicroInterpreter_Invoke(interpreter);
if (invoke_status != kTfLiteOk) {

return SL_STATUS_FAIL;
}

/* Get the output value */
*y_val = output->data.f[0];

return SL_STATUS_OK;
}

3. Modify your app.c to use this component:

#include "sl_tflite_sine_predictor.h"

/* In app_init() */
sl_status_t status = sl_tflite_sine_predictor_init();
if (status != SL_STATUS_OK) {
printf("Failed to initialize TinyML model: %d\n", (int)status);
return;

}

/* In app_process_action() */
float x_val = position * X_RANGE;
float y_val = 0.0f;

/* Run inference */
status = sl_tflite_sine_predictor_predict(x_val, &y_val);
if (status != SL_STATUS_OK) {
printf("Inference failed: %d\n", (int)status);
return;

}

This approach encapsulates the TensorFlow Lite components behind a C API, making it easier to
use throughout your application.
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4.14 Conclusion
In this chapter, we’ve built a complete TinyML application for the EFR32MG24 using the Gecko SDK
and Simplicity Studio. This approach simpli昀椀es deployment by leveraging the hardware abstraction
layer and pre-integrated components of the SDK.

Key takeaways from this implementation include:
1. Using Simplicity Studio’s project templates to quickly set up a TinyML environment
2. Integrating a pre-trained TensorFlow Lite model with the application
3. Visualizing model predictions through LED brightness or LCD displays
4. Applying memory and power optimizations
5. Measuring and improving performance
6. Creating a reusable component for TinyML functionality

This “Hello World” example serves as a foundation for more complex TinyML applications on the
EFR32 platform. From here, you can experiment with:

• More sophisticated models like keyword spotting, gesture recognition, or anomaly detection
• Sensor integration for real-time data collection
• Custom hardware interfaces for di昀昀erent output methods
• Multi-model systems that combine di昀昀erent ML capabilities

The Gecko SDK approach makes these extensions more accessible by providing a structured and
optimized framework speci昀椀cally designed for Silicon Labs devices.
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Chapter 5

Handwriting Digit Recognition

5.1 Chapter Objectives
• Develop a CNN model for handwriting recognition using the MNIST dataset

• Optimize the model through quantization to 昀椀t within microcontroller constraints
• Implement the model on the EFR32xG24 platform
• Evaluate performance metrics including accuracy, model size, and inference time
• Identify practical considerations and optimization strategies for TinyML deployment

5.2 Overview
This chapter presents the implementation and evaluation of a handwriting recognition system on the
Silicon Labs EFR32xG24 microcontroller, a resource-constrained device designed for edge comput-
ing applications. The research demonstrates how Convolutional Neural Networks (CNNs) can be
e昀昀ectively deployed for on-device inference despite signi昀椀cant memory and processing limitations.
The methodology encompasses model development using TensorFlow, optimization through quan-
tization techniques, and deployment on embedded hardware. The implemented system achieves
99.18% accuracy on the MNIST dataset while maintaining a model size of approximately 101.59 KB,
representing a 91% reduction from the unoptimized model. This work illustrates the feasibility of
deploying sophisticated machine learning applications directly on edge devices, enabling privacy-
preserving, low-latency inference for applications ranging from smart interfaces to IoT sensing. The
chapter details the technical challenges encountered during implementation and discusses optimiza-
tion strategies relevant to TinyML deployment on microcontroller-class devices.

5.3 Introduction
The intersection of arti昀椀cial intelligence and edge computing has given rise to a new paradigm for
deploying machine learning models directly on resource-constrained devices. This approach, com-
monly referred to as TinyML, enables on-device inference without requiring cloud connectivity, o昀昀er-
ing advantages in privacy, latency, and power e昀케ciency. By processing data locally, edge AI solutions
eliminate the need to transmit potentially sensitive information to remote servers, reduce response
times by avoiding network round-trips, and minimize energy consumption associated with wireless
communication.
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Handwriting recognition represents an ideal test case for edgeAI deployment. As a classical pattern
recognition problem, it demonstrates the capabilities ofmachine learningwhile remaining su昀케ciently
bounded in scope to 昀椀t within the constraints of microcontroller-based systems. When successfully
implemented on edge devices, handwriting recognition can enable various applications, from smart
note-taking tools to authentication systems, operating independently from cloud infrastructure.

5.3.1 Challenges of Microcontroller Deployment
Deploying neural networks on microcontrollers presents signi昀椀cant technical challenges due to their
limited computational resources. The EFR32xG24 microcontroller used in this chapter, while rela-
tively advanced for its class, operates with strict constraints. The processing power is limited to a 78
MHzARMCortex-M33 processor, with memory capacity of only 256 KB RAM and 1536 KB 昀氀ash stor-
age, and aminimal power budget for battery-operated scenarios. These limitations necessitate careful
optimization of model architecture, quantization strategies, and memory management techniques.
Standard machine learning frameworks and models designed for server or mobile deployment are
typically orders of magnitude too large for microcontroller environments, requiring substantial adap-
tation.

5.3.2 Chapter Objectives
This chapter aims to develop a CNN model for handwriting recognition using the MNIST dataset
and optimize it through quantization to 昀椀t within microcontroller constraints. It demonstrates the
implementation of the model on the EFR32xG24 platform and evaluates the performance metrics
including accuracy, model size, and inference time. Additionally, it identi昀椀es practical considerations
and optimization strategies for TinyML deployment, providing valuable insights for researchers and
practitioners in this emerging 昀椀eld.

5.4 Background & Related Work

5.4.1 TinyML: Machine Learning for Embedded Systems
TinyML represents the 昀椀eld of machine learning tailored speci昀椀cally for extremely resource-
constrained devices. Unlike traditional deep learning models that may require gigabytes of memory
and powerful GPUs, TinyML models typically occupy kilobytes of storage and run on microcon-
trollers with limited computational capabilities. This signi昀椀cant reduction in resource requirements
is achieved through specialized model architectures, parameter optimization, and quantization
techniques.

The development of TensorFlow Lite for Microcontrollers has been instrumental in advancing
TinyML applications. This framework provides an optimized runtime for executing neural network
models on devices with as little as 16 KB of RAM, enabling a wide range of on-device inference
capabilities. Recent research has demonstrated successful TinyML implementations for applications
including wake word detection, anomaly detection, and gesture recognition. The work of Warden
and Situnayake (2020) has been particularly in昀氀uential in establishing methodologies for deploying
machine learning models on ultra-low-power microcontrollers.

5.4.2 Convolutional Neural Networks for Image Recognition
CNNs have revolutionized computer vision tasks through their ability to automatically extract hierar-
chical features from image data. The architecture of CNNs, inspired by the visual cortex of mammals,
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employs convolutional layers that apply spatial 昀椀lters to input data, capturing patterns at di昀昀erent
scales and abstraction levels.

For handwriting recognition, CNNs o昀昀er signi昀椀cant advantages over traditional machine learning
approaches. Their translation invariance property—achieved through convolutional operations and
pooling layers—allows them to recognize digits regardless of their precise position within the input
image. This characteristic is particularly valuable for handwriting recognition, where variations in
style, position, and scale are common.

TheMNIST dataset (LeCun et al., 1998) has become the standard benchmark for handwriting recog-
nition algorithms. Comprising 60,000 training images and 10,000 test images of handwritten digits
(0-9), each normalized to 28×28 pixels, this dataset provides a consistent evaluation framework for
comparing di昀昀erent approaches. Its widespread adoption has facilitated meaningful comparisons
across diverse algorithmic strategies and implementation approaches.

5.4.3 Model Optimization for Resource-Constrained Devices
Deploying neural networks on microcontrollers requires substantial optimization to 昀椀t within mem-
ory constraints while maintaining acceptable inference performance. Several key techniques have
emerged in this domain. Quantization involves converting 昀氀oating-point weights and activations to
lower-precision formats (e.g., 8-bit integers), which reducesmemory requirements and improves com-
putational e昀케ciency. Post-training quantization can reduce model size by up to 75% with minimal
accuracy loss, making it a crucial technique for microcontroller deployment.

Model architecture selection also plays a critical role in TinyML applications. Lightweight archi-
tectures like MobileNet or SqueezeNet prioritize parameter e昀케ciency, achieving competitive accu-
racy with signi昀椀cantly fewer parameters than traditional models. These architectures incorporate
depthwise separable convolutions and other parameter-e昀케cient operations speci昀椀cally designed for
resource-constrained environments.

Pruning represents another e昀昀ective optimization strategy, involving the systematic removal of
redundant or less important connections within a network to reduce model size while preserving
most of the original accuracy. Knowledge distillation, where a compact “student” model is trained
to replicate the behavior of a larger “teacher” model, can also produce e昀케cient networks suitable for
embedded deployment.

Recent work by Banbury et al. (2021) has focused on benchmarking TinyML systems, highlighting
the trade-o昀昀s between model size, accuracy, and inference latency across di昀昀erent optimization ap-
proaches and hardware platforms. These benchmarks provide valuable insights for selecting appro-
priate optimization strategies based on speci昀椀c application requirements and hardware constraints.

5.5 Methodology

5.5.1 System Architecture
The handwriting recognition system employs a modular architecture engineered for e昀케cient opera-
tion within the constraints of the microcontroller platform. At its core, the system processes 28×28
pixel grayscale images through a series of specialized components working in concert.

Central to the system’s operation is the TensorFlow Lite Runtime, which orchestrates the execution
of the quantized CNNmodel. This component manages the complex tasks of memory allocation and
operation scheduling, ensuring e昀케cient use of the limited computational resources. Surrounding this
runtime is a carefully sized tensor arena—a dedicated 70KB memory bu昀昀er that serves as working
space for tensors during the inference process.
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The input processingmodule transforms raw image data, whether fromprede昀椀ned test arrays or ex-
ternal sources, into the appropriate format for neural network inference. Following model execution,
the classi昀椀cation output component analyzes probability distributions to determine the recognized
digit and its associated con昀椀dence score. Results 昀氀ow through a communication interface utilizing
USART or EUSART protocols, enabling external monitoring and system evaluation.

Through strategic partitioning of responsibilities, this architecturemaximizes the capabilities of the
EFR32xG24 while maintaining the 昀氀exibility needed for potential future enhancements. Each com-
ponent can be optimized independently, allowing for targeted improvements without necessitating
wholesale system redesign.

5.5.2 Model Design and Training

5.5.2.1 Dataset Preparation

The MNIST dataset was used for model training and evaluation. The dataset consists of 70,000
handwritten digit images (60,000 for training, 10,000 for testing), each normalized to 28×28 pixels
in grayscale format. Prior to training, preprocessing steps were applied, including reshaping the
images to include a channel dimension (28×28×1), normalizing pixel values to the range [0, 1], and
ensuring consistent data types for training stability. The following code illustrates the preprocessing
procedure:

# Load dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape and normalize
train_images = train_images.reshape((-1, 28, 28, 1)).astype('float32') / 255.0
test_images = test_images.reshape((-1, 28, 28, 1)).astype('float32') / 255.0

5.5.2.2 CNN Architecture

The model architecture was designed to balance accuracy with parameter e昀케ciency, a critical consid-
eration for microcontroller deployment. The network consists of three convolutional blocks followed
by fully connected layers, as shown in Table 1.

Table 1: CNN Model Architecture

Layer Type Parameters Output Shape

Input - (28, 28, 1)
Conv2D 3×3, 32 昀椀lters, ReLU 320
MaxPooling2D 2×2 0
Conv2D 3×3, 64 昀椀lters, ReLU 18,496
MaxPooling2D 2×2 0
Conv2D 3×3, 64 昀椀lters, ReLU 36,928
Flatten - 0
Dense 64 neurons, ReLU 36,928
Dense 10 neurons, Softmax 650

The model was implemented using TensorFlow’s Keras API:

model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
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layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')

])

5.5.2.3 Training Con昀椀guration

The model was trained with the following con昀椀gurations:

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5)

Training parameters included theAdamoptimizerwith default learning rate (0.001), sparse categor-
ical cross-entropy loss function, accuracy metrics, 5 epochs, and default batch size (32). The relatively
small number of epochs was su昀케cient due to the simplicity of the MNIST dataset and the model’s
e昀케cient learning capacity. Training was performed in Google Colab to leverage GPU acceleration.

5.5.3 Model Optimization
5.5.3.1 Post-Training Quantization

Tomeet thememory constraints of the EFR32xG24microcontroller, the trainedmodelwas subjected to
post-training quantization using TensorFlow Lite’s quantization framework. This process converted
the 32-bit 昀氀oating-point weights and activations to 8-bit integers, signi昀椀cantly reducing the model
size while preserving accuracy.

The quantization process required de昀椀ning a representative dataset to calibrate the dynamic range
of activations:

def representative_data_gen():
"""Generator function for a representative dataset for quantization."""
for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):

yield [tf.cast(input_value, tf.float32)]

# Configure the converter for full integer quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_data_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8

# Convert and save the model
quantized_model = converter.convert()
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with open("hw_model.tflite", "wb") as f:
f.write(quantized_model)

The quantization process involved de昀椀ning a representative dataset from the training data, setting
optimization 昀氀ags for integer quantization, specifying input and output types as int8, calibrating the
quantization parameters using the representative dataset, and converting and serializing the 昀椀nal
model.

5.5.3.2 Model Veri昀椀cation

After quantization, the model was veri昀椀ed to ensure that the accuracy remained acceptable. This
veri昀椀cation process involved loading the quantized model with the TensorFlow Lite interpreter, run-
ning inference on the test set, comparing the accuracy against the original 昀氀oating-point model, and
analyzing the confusion matrix to identify any systematic errors introduced by quantization. The re-
sults con昀椀rmed that the quantization process preserved the high accuracy of the original model while
dramatically reducing its size.

5.5.4 Embedded Implementation
The embedded implementation utilized Silicon Labs’ Simplicity Studio development environment.
The implementation process followed a systematic approach, beginning with the creation of a new
C++ project and the addition of the TensorFlow Lite Micro component through the Component Li-
brary. The tensor arena size and I/O interfaces were carefully con昀椀gured based on the model’s re-
quirements, and the quantized model was integrated into the project. Finally, the inference pipeline
was implemented to handle the end-to-end process from input acquisition to result communication.

Memory management represented a critical aspect of the implementation due to the constraints
of the microcontroller. The tensor arena was con昀椀gured to 70KB based on extensive pro昀椀ling of the
model’s operational memory footprint. The pro昀椀ling process involved instrumenting the model ex-
ecution to track maximum memory usage across various input samples, with particular attention
to intermediate tensor allocations during critical network layers such as the larger convolutional op-
erations. This methodical approach ensured su昀케cient working space for inference while optimiz-
ing RAM utilization. All bu昀昀ers were statically allocated to avoid heap fragmentation, which can
be particularly problematic in long-running embedded applications. Input and output tensors were
structured to minimize memory copying operations, reducing both the memory footprint and com-
putational overhead.

The inference pipeline was implemented in C++ and consisted of several key steps. The initializa-
tion phase involved loading the model and allocating tensors, establishing the foundation for sub-
sequent inference operations. Input processing handled the reading of input images, either from
prede昀椀ned arrays or external sources, and prepared them for model execution. The model execution
phase utilized the TensorFlow Lite Micro interpreter to run inference on the prepared input, while
output processing determined the predicted digit based on the model’s output probabilities. Finally,
the result communication phase transmitted the recognition results via the UART interface, enabling
external monitoring and evaluation of the system’s performance.

// Simplified code snippet showing the key inference components
tflite::MicroInterpreter interpreter(model, resolver, tensor_arena,

kTensorArenaSize, error_reporter);
interpreter.AllocateTensors();
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// Copy input image to input tensor
TfLiteTensor* input = interpreter.input(0);
for (int i = 0; i < 28*28; i++) {

input->data.int8[i] = input_image[i];
}

// Run inference
interpreter.Invoke();

// Process output
TfLiteTensor* output = interpreter.output(0);
int predicted_digit = 0;
int max_score = output->data.int8[0];
for (int i = 1; i < 10; i++) {

if (output->data.int8[i] > max_score) {
max_score = output->data.int8[i];
predicted_digit = i;

}
}

5.6 Implementation Details

5.6.1 Model Training Results
The CNN model was trained for 5 epochs on the MNIST dataset, showing rapid convergence on both
training and test sets. Table 2 summarizes the training progression across epochs.

Table 2: Training Progress by Epoch

Epoch Training Accuracy Training Loss Inference Time/Batch

1 0.8930 0.3433 10ms
2 0.9837 0.0483 9ms
3 0.9894 0.0343 10ms
4 0.9924 0.0252 7ms
5 0.9936 0.0202 7ms

The 昀椀nal evaluation on the test set yielded an accuracy of 99.19%, con昀椀rming the model’s strong
performance on unseen data.

5.6.2 Model Quantization E昀昀ects
Quantization substantially reduced the model size while maintaining comparable accuracy metrics.
Table 3 compares the original 昀氀oating-point model with the quantized version.

Table 3: Model Comparison Before and After Quantization

Metric Original Model Quantized Model Change

Model Size 1135.36 KB 101.59 KB -91.05%
Test Accuracy 99.19% 99.18% -0.01%
Inference Time (Desktop) ~2ms/sample ~3ms/sample +50%
Precision (macro avg) 0.99 0.99 0%
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Metric Original Model Quantized Model Change

Recall (macro avg) 0.99 0.99 0%

The confusion matrices for both the original and quantized models showed nearly identical perfor-
mance patterns, with the most common misclassi昀椀cations occurring between visually similar digits,
such as 4 and 9, or 3 and 5. This consistency indicates that the quantization process preserved the
fundamental classi昀椀cation capabilities of the model while signi昀椀cantly reducing its computational
requirements.

5.6.3 Embedded System Implementation
The handwriting recognition system was implemented on the EFR32xG24 microcontroller following
the architecture described previously. The TensorFlow Lite Micro component was integrated into the
Simplicity Studio projectwith speci昀椀c con昀椀guration parameters, including a tensor arena size of 70KB,
EUSART for the I/O stream backend, and an errors-only debug level to minimize runtime overhead.

The system was designed to accept handwritten digit images in two ways: prede昀椀ned test im-
ages embedded directly in the 昀椀rmware as C arrays, and external inputs generated using a provided
Python script. The script converted MNIST images into C-compatible arrays that could be directly
integrated into the 昀椀rmware, facilitating testing and evaluation with diverse input samples:

# Generate C array from MNIST image
idx = random.randint(1, len(test_images))
mnist_image = test_images[idx]
mnist_label = test_labels[idx]

print("uint8_t mnist_image[28][28] = {")
for i, row in enumerate(mnist_image):

row_str = ", ".join(map(str, row))
if i < 27:

print(f" {{ {row_str} }},")
else:

print(f" {{ {row_str} }}")
print("};")

The 昀椀rmware application followed a structured organization, with clear separation of concerns
between system initialization, TensorFlow setup, and themain inference loop. The setup_tensor昀氀ow()
function performed critical tasks of loading the model and allocating tensors:

void setup_tensorflow() {
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = &micro_error_reporter;

model = tflite::GetModel(g_model);

static tflite::MicroMutableOpResolver<3> micro_op_resolver;
micro_op_resolver.AddBuiltin(

tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
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micro_op_resolver.AddBuiltin(
tflite::BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());

micro_op_resolver.AddBuiltin(
tflite::BuiltinOperator_FULLY_CONNECTED,
tflite::ops::micro::Register_FULLY_CONNECTED());

static tflite::MicroInterpreter static_interpreter(
model, micro_op_resolver, tensor_arena, kTensorArenaSize,
error_reporter);

interpreter = &static_interpreter;

TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {

error_reporter->Report("AllocateTensors() failed");
return;

}

input = interpreter->input(0);
output = interpreter->output(0);

}

5.7 Results & Discussion

5.7.1 Classi昀椀cation Performance
The quantized model achieved an overall classi昀椀cation accuracy of 99.18% on the MNIST test set,
demonstrating that the optimization process preserved the high performance of the original model.
Analysis of the confusion matrix revealed that most digits were classi昀椀ed with high accuracy, with
only a small number of misclassi昀椀cations.

The most common errors occurred with digits that share similar visual features. Speci昀椀cally, the
systemmistook the digit 7 for 2 in 10 instances, confused 9 with 4 in 8 instances, andmisclassi昀椀ed 5 as
3 in 6 instances. These particular error patterns re昀氀ect speci昀椀c visual ambiguities in the handwritten
samples rather than systematic failures in the recognition algorithm.

These misclassi昀椀cation patterns align with known perceptual challenges in digit recognition. For
instance, certain writing styles render 7 with a horizontal stroke that resembles the top curve of 2,
while 9 and 4 share similar structural elements particularlywhen the loop of 9 is not completely closed.
Such confusions mirror di昀케culties that even human observers might encounter when interpreting
ambiguous handwriting samples.

5.7.2 Resource Utilization
The embedded implementation was carefully pro昀椀led to understand its resource utilization on the
EFR32xG24 platform. Table 4 summarizes the key metrics.

Table 4: Resource Utilization on EFR32xG24
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Resource Utilization Available Percentage

Flash Memory 153.2 KB 1536 KB 9.97%
RAM 73.4 KB 256 KB 28.67%
Inference Time ~210 ms - -
Power Consumption ~12 mW - -

The 昀氀ash memory utilization includes both the model (101.59 KB) and the application code (ap-
proximately 51.6 KB). The RAM usage is dominated by the tensor arena (70 KB), with the remainder
allocated to application variables and the system stack.

Inference time averaged approximately 210 milliseconds per sample, which is acceptable for inter-
active applications but would be challenging for real-time processing of continuous input streams.
Power consumption during inference measured approximately 12 mW, which is su昀케ciently low to
enable battery-powered operation for extended periods. These metrics demonstrate that the imple-
mented system achieves a reasonable balance between performance and resource utilization, making
it viable for practical deployment in resource-constrained environments.

5.7.3 Comparison with Cloud-Based Approaches
When compared with alternative deployment approaches, the microcontroller implementation o昀昀ers
distinct advantages despite certain performance limitations. Table 5 compares key metrics across
di昀昀erent deployment options.

Table 5: Comparison of Deployment Approaches

Metric Microcontroller Mobile Phone Cloud Server

Inference Time ~210 ms ~30 ms ~10 ms*
Latency <1 ms <1 ms ~100-500 ms
Privacy High Medium Low
Power E昀케ciency High Medium Low
O昀툀ine Capability Yes Yes No
Scalability Low Medium High

*Cloud server inference time excludes network transfer delays
Cloud-based solutions provide superior inference speed (approximately 10 ms per sample, exclud-

ing network transfer delays) compared to themicrocontroller implementation (210ms), but introduce
signi昀椀cant latency due to network communication (100-500 ms). Mobile phone deployment repre-
sents a middle ground, with inference times around 30 ms and minimal latency, but with higher
power consumption and reduced privacy compared to the microcontroller solution.

The microcontroller implementation excels in terms of privacy, power e昀케ciency, and o昀툀ine ca-
pability, making it particularly suitable for applications where these factors outweigh raw process-
ing speed. These might include privacy-sensitive environments, battery-powered devices, or deploy-
ments in areas with limited or unreliable network connectivity. The inherent trade-o昀昀s between per-
formance and resource requirements highlight the importance of selecting the appropriate deploy-
ment approach based on the speci昀椀c requirements and constraints of the target application.

5.8 Challenges & Ethical Considerations

5.8.1 Technical Challenges
Implementation of the handwriting recognition system revealed several interconnected technical chal-
lenges that necessitated innovative approaches. Memory utilization emerged as perhaps the most
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fundamental constraint, requiring strategies that extended beyond conventional programming prac-
tices.

Initially, the research focused on developing e昀케cient bu昀昀er management techniques to accommo-
date the model within the limited RAM. Through iterative pro昀椀ling, the tensor arena allocation size
was progressively re昀椀ned. This process involved both static analysis of the model’s architecture and
dynamic assessment of memory usage patterns during execution. Particularly memory-intensive op-
erations, such as the initial convolution layers, required special attention to prevent stack over昀氀ows
during inference.

Alongside memory concerns, quantization precision presented another set of challenges. The con-
version from 昀氀oating-point to 昀椀xed-point arithmetic introduced potential sources of error that re-
quired careful calibration. Selection of the representative dataset proved especially critical; insu昀케-
cient diversity in calibration samples led to poor performance on certain digit classes. Multiple cal-
ibration iterations were necessary, with progressive re昀椀nement based on confusion matrix analysis
rather than just aggregate accuracy metrics.

Development environment integration introduced an orthogonal set of challenges. Version compat-
ibility between Silicon Labs components and TensorFlow Lite Micro required careful management of
dependencies. The build system needed substantial customization to accommodate both the model
data and the TensorFlow runtime. Debugging capabilities were constrained by the limited mem-
ory available for diagnostic information, necessitating alternative approaches such as state logging
through the communication interface and o昀툀ine analysis of execution traces.

5.8.2 Ethical Considerations

While handwriting recognition appears to be a relatively benign application of machine learning, sev-
eral ethical considerations are relevant to its implementation on edge devices. On-device processing
inherently enhances privacy by keeping sensitive information local, but developers should still con-
sider data collection practices for system improvement, persistence of recognized text, and integration
with other systems that might leverage the recognized information. Clear user consent for data col-
lection and transparent communication regarding data utilization are essential for maintaining trust
and respecting user privacy.

Handwriting recognition systems may perform di昀昀erently across diverse user populations due to
variations in handwriting styles. Di昀昀erent cultural backgrounds, education levels, and physical capa-
bilities lead to variations that may a昀昀ect recognition accuracy. The MNIST dataset, while standard,
has known limitations in diversity, potentially resulting inmodels that performworse on handwriting
styles underrepresented in the training data. Users with motor impairments may have handwriting
that di昀昀ers signi昀椀cantly from the training distribution, potentially leading to lower recognition rates
and creating accessibility barriers. Addressing these considerations requires diverse training data
and adaptive recognition strategies to ensure equitable performance across user populations.

The deployment context of handwriting recognition systems raises additional ethical considera-
tions related to the consequences of recognition errors. The stakes of misclassi昀椀cation vary widely
depending onwhether the system is used for casual note-taking ormore critical applications likemed-
ical transcription or legal documentation. Providing clear feedback about recognition con昀椀dence and
implementing easy correction mechanisms are essential for responsible deployment. Users should
understand the capabilities and limitations of the system to set appropriate expectations and main-
tain trust, particularly in contexts where incorrect recognition could have signi昀椀cant consequences.
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5.9 Future Work & Conclusion
This chapter has demonstrated the successful implementation of a handwriting recognition system
on the EFR32xG24 microcontroller, achieving 99.18% accuracy on the MNIST dataset with a model
size of only 101.59 KB. The quantization process reduced the model size by 91% with negligible im-
pact on accuracy, highlighting the e昀昀ectiveness of post-training quantization for TinyML applications.
The implementation addresses key challenges in memory management, quantization e昀昀ects, and re-
source utilization, providing practical insights for deploying sophisticated neural networks on highly
constrained devices. While this chapter focused on static image data processing, the principles estab-
lished here—particularly in model optimization and memory management—provide a foundation
for more dynamic sensing applications. In the next chapter, we will extend these techniques to time-
series data from inertial measurement units (IMUs), enabling gesture recognition applications that
process motion patterns rather than static images. This shift from spatial to temporal pattern recogni-
tion represents a natural progression towardmore interactive and responsive embeddedML systems.
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Chapter 6

IMU-Based Gesture Recognition

6.1 Chapter Objectives
• Develop a CNN model for gesture recognition using IMU sensor data

• Optimize the model through quantization to 昀椀t within MCU constraints
• Implement the model on the EFR32xG24 platform
• Evaluate performance metrics including accuracy, model size, and inference time
• Identify practical considerations and optimization strategies for TinyML deployment

6.2 Introduction
Extending the embedded ML foundations established in Chapters 2 and 3, this chapter investigates
the practical implementation of gesture recognition systems using IMUswithin the severe constraints
of modern microcontrollers. While the previous chapter demonstrated how convolutional neural net-
works can e昀昀ectively classify static images with high accuracy, we now advance to the considerably
more challenging domain of time-series classi昀椀cation for human motion interpretation. This transi-
tion from spatial to temporal pattern recognition requires adapting our neural network architectures
and processing pipelines while maintaining the core optimization techniques previously established.

Motion recognition using IMUs represents an ideal next step in our exploration of edge AI applica-
tions. As time-series classi昀椀cation problems, gesture and activity recognition demonstrate the capa-
bilities ofMLwhile remaining su昀케ciently bounded in scope to 昀椀t withinMCU constraints. When suc-
cessfully implemented, IMU-based recognition enables various applications from gesture-controlled
interfaces to activity monitoring and fall detection, all operating independently from cloud infrastruc-
ture.

6.3 System Architecture
The gesture recognition system follows a modular architecture designed to e昀케ciently process IMU
data, perform inference using a quantized CNN model, and output classi昀椀cation results. This archi-
tecture builds upon the embedded systems design principles introduced in Chapter 3, with speci昀椀c
adaptations for real-time motion processing.

The IMU Data Acquisition component samples the sensor at 1000 Hz, collecting accelerometer and
gyroscope data. The Signal Processing module performs 昀椀ltering, normalization, and windowing
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operations, similar to those discussed in Chapter 5 but tailored speci昀椀cally for motion data. The Ten-
sorFlow Lite Runtime manages execution of the quantized CNN model, utilizing the memory alloca-
tion and operation scheduling techniques covered in Chapter 6. A dedicated Tensor Arena provides
working space for input, output, and intermediate tensors during inference. TheClassi昀椀cationOutput
component processes model probabilities to determine the recognized gesture and con昀椀dence score,
while the Communication Interface provides results via USART for debugging and visualization.

6.4 Hardware Components
Building on the MCU selection criteria discussed in Chapter 2, the EFR32xG24 forms the core of this
system. Its ARM Cortex-M33 processor, memory con昀椀guration, and power pro昀椀le make it suitable
for the computational demands of neural network inference while maintaining reasonable power con-
sumption.

The ICM-20689 IMU integrates with the MCU using the communication protocols discussed in
Chapter 4. For this implementation, it was con昀椀gured with a sampling rate of 1000 samples per sec-
ond, accelerometer bandwidth of 1046 Hz, gyroscope bandwidth of 41 Hz, accelerometer full scale of
±2g, and gyroscope full scale of ±250 °/sec. These parameters optimize the sensor for capturing the
characteristic acceleration and rotation patterns of hand gestures while minimizing noise.

6.5 Model Design and Training

6.5.1 Dataset Preparation
Expanding on the data preprocessing techniques from Chapter 3, this implementation required spe-
cialized handling for time-series motion data. The dataset consists of IMU recordings of 昀椀ve dis-
tinct gestures: up, down, left, right, and no movement. Data preprocessing involved segmenting
accelerometer and gyroscope readings into 昀椀xed-length windows (80 samples per window), normal-
izing by the full scale, and applying the labeling scheme described in Chapter 7. The following code
implements this preprocessing:

# Define window size and number of features
WINDOW_SIZE = 80 # Each gesture window contains 80 samples
NUM_FEATURES = 3 # Using acc_x, acc_y, acc_z for primary model

# Extract sensor data (only accelerometer data for the primary model)
X = df.iloc[:, :NUM_FEATURES].values # Select first three columns

# Extract labels
y = df.iloc[:, -1].values # Last column is the label

# Reshape data into windows
X_windows = []
y_windows = []

for i in range(0, len(df), WINDOW_SIZE):
if i + WINDOW_SIZE <= len(df): # Ensure complete window

X_windows.append(X[i:i+WINDOW_SIZE])
y_windows.append(y[i]) # Assign one label per window
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X_windows = np.array(X_windows)
y_windows = np.array(y_windows)

6.5.2 CNN Architecture
The model architecture extends the CNN structures introduced in Chapter 3, adapting them for time-
series processing rather than image classi昀椀cation. The network consists of convolutional blocks fol-
lowed by fully connected layers, as shown below:

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(8, (4, 1), padding="same", activation="relu",

input_shape=(seq_length, num_features, 1)),
tf.keras.layers.MaxPool2D((3, 1)),
tf.keras.layers.Dropout(0.1),

tf.keras.layers.Conv2D(16, (4, 1), padding="same", activation="relu"),
tf.keras.layers.MaxPool2D((3, 1), padding="same"),
tf.keras.layers.Dropout(0.1),

tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation="relu"),
tf.keras.layers.Dropout(0.1),

tf.keras.layers.Dense(5, activation="softmax") # 5 gesture classes
])

This architecture treats IMU data as a 2D input with dimensions (80, 3, 1), where 80 represents time
steps, 3 represents accelerometer axes, and 1 is the channel dimension. TheCNNapplies convolutions
across the time dimension to capture motion patterns, similar to how spatial convolutions capture
image features in the examples from Chapter 13. While the handwriting recognition model used
square kernels for processing images, thismodel employs rectangular (4×1) kernels that spanmultiple
time steps but only one axis at a time, better capturing the temporal relationships in the motion data.

6.5.3 Training Con昀椀guration
The model training used standard techniques covered in earlier chapters, with parameters tuned for
the speci昀椀c characteristics of motion data:

# Compile the model
model.compile(optimizer='adam',

loss='categorical_crossentropy',
metrics=['accuracy'])

# Train the model
history = model.fit(X_train, y_train, epochs=30, batch_size=32,

validation_data=(X_test, y_test))

As in previous examples, the Adam optimizer was used with default learning rate, categorical
cross-entropy loss, accuracy metrics, and a training/testing split of 80%/20%. However, the number
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of epochs was increased to 30 to account for the greater complexity of time-series pattern learning
compared to the simpler classi昀椀cation tasks in previous chapters. This longer training period allows
the model to better capture the subtle temporal dependencies that di昀昀erentiate between similar ges-
tures.

6.6 Model Optimization
6.6.1 Post-Training Quantization
Following the quantization approaches from Chapter 3, the trained model was optimized using
TFLite’s post-training quantization framework:

# Perform quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()

# Save the quantized model
quantized_model_file = 'IMU_CNN_model_quantized.tflite'
with open(quantized_model_file, 'wb') as f:

f.write(tflite_quant_model)

This process converted the 32-bit 昀氀oating-point weights and activations to 8-bit integers, signi昀椀-
cantly reducing the model size while preserving accuracy, consistent with the size reductions ob-
served in Chapter 13’s examples. The quantization approach for time-series data follows similar prin-
ciples to imagedata, though special attentionmust be paid tomaintaining the relative scaling of sensor
readings across di昀昀erent axes to preserve the motion patterns essential for gesture recognition.

6.7 Embedded Implementation
6.7.1 Development Environment and IMU Interface
The embedded implementation utilized Simplicity Studio as described in Chapter 3, with additions
speci昀椀c to IMU interaction. The acquisition of IMUdata was implemented using driver functions that
handle sensor initialization, calibration, and reading:

void init_imu(){
sl_board_enable_sensor(SL_BOARD_SENSOR_IMU);
sl_imu_init();
sl_imu_configure(ODR);
sl_imu_calibrate_gyro();

}

void read_imu(int16_t avec[3], int16_t gvec[3]){
sl_imu_update();
// Wait for IMU data and update once
while (!sl_imu_is_data_ready());
sl_imu_get_acceleration(avec);
sl_imu_get_gyro(gvec);

}
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The collected data is stored in a bu昀昀er for processing:

void collect_imu_data(){
int16_t a_vecm[3] = {0, 0, 0};
int16_t g_vecm[3] = {0, 0, 0};
for(int i=0; i<DATA_SIZE; i++){

read_imu(a_vecm, g_vecm);

imu_data[i][0] = a_vecm[0];
imu_data[i][1] = a_vecm[1];
imu_data[i][2] = a_vecm[2];
imu_data[i][3] = g_vecm[0];
imu_data[i][4] = g_vecm[1];
imu_data[i][5] = g_vecm[2];

}
}

This data collection approach di昀昀ers from the image handling in Chapter 4, as we must actively ac-
quire time-series sensor data rather than processing static images. The system must maintain consis-
tent sampling intervals to preserve the temporal characteristics of gestures, whereas the handwriting
recognition system dealt with complete images that were already normalized and preprocessed.

6.7.2 Inference Pipeline
Building on the TFLite Micro implementation from Chapter 13, the inference pipeline was expanded
to handle IMU data processing:

void app_process_action(void)
{
int i, j, predicted_digit = 0;
char str1[150];
float val, avalue[5], max_value = 0;

// Get data from IMU
collect_imu_data();

// Get the input tensor for the model
TfLiteTensor* input = sl_tflite_micro_get_input_tensor();

// Check model input
input = sl_tflite_micro_get_input_tensor();
if ((input->dims->size != 4) || (input->dims->data[0] != 1)

|| (input->dims->data[2] != 3)
|| (input->type != kTfLiteFloat32)) {

return;
}

// Assign data to the tensor input
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for (i = 0; i < 80; ++i) {
for (j = 0; j < 3; ++j) {

int index = i * 3 + j; // We just want acc data
input->data.f[index] = imu_data[i][j]/ACC_COEF;

}
}

// Invoke the TensorFlow Lite model for inference
TfLiteStatus invoke_status = sl_tflite_micro_get_interpreter()->Invoke();
if (invoke_status != kTfLiteOk) {

TF_LITE_REPORT_ERROR(sl_tflite_micro_get_error_reporter(),
"Bad input tensor parameters in model");

return;
}

// Get the output tensor, which contains the model's predictions
TfLiteTensor* output = sl_tflite_micro_get_output_tensor();

// Find the prediction with highest confidence
for (int idx = 0; idx < 5; ++idx) {

val = output->data.f[idx];
avalue[idx] = val;
if (val > max_value) {

max_value = val;
predicted_digit = idx;

}
}

// Output the result
sprintf(str1, "%s %d %d\n", movementNames[predicted_digit],

predicted_digit, int(max_value*100));
USART0_Send_string(str1);

}

While the core inference mechanism is similar to the handwriting recognition system, this imple-
mentation deals with continuous data acquisition and real-time processing rather than discrete image
classi昀椀cation. The system must maintain a sliding window of sensor readings and e昀케ciently process
them as they arrive, creating unique challenges for memory management and timing that weren’t
present in the static image classi昀椀cation scenario.

6.8 Implementation Details

This section examines the practical implementation aspects of the gesture recognition system, focus-
ing on three critical components that determine system performance. First, the signal processing
and sensor fusion techniques that transform raw IMU data into usable orientation information are
detailed. Next, the visualization tools developed for system debugging and validation are presented.
Finally, the motion detection algorithm that optimizes system power e昀케ciency by triggering classi昀椀-
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cation only when necessary is explained. Together, these components form an integrated approach
to reliable, e昀케cient gesture detection on resource-constrained hardware.

6.8.1 Signal Processing and Sensor Fusion
Expanding on the digital signal processing techniques from Chapter 5, this implementation incorpo-
rated a Kalman 昀椀lter to fuse accelerometer and gyroscope data for improved orientation estimation:

void imu_kalmanFilter(float* angle, float* bias, float P[2][2], float newAngle, float newRate) {
float rate = newRate - (*bias);
*angle += DT * rate;

// Prediction step
P[0][0] += Q_ANGLE;
P[0][1] -= Q_ANGLE;
P[1][0] -= Q_ANGLE;
P[1][1] += Q_BIAS;

// Measurement update
float y = newAngle - (*angle);
float S = P[0][0] + R_MEASURE;
float K[2];
K[0] = P[0][0] / S;
K[1] = P[1][0] / S;

*angle += K[0] * y;
*bias += K[1] * y;

P[0][0] -= K[0] * P[0][0];
P[0][1] -= K[0] * P[0][1];
P[1][0] -= K[1] * P[0][0];
P[1][1] -= K[1] * P[0][1];

}

This sensor fusion provides more stable orientation estimates than using either accelerometer or
gyroscope data alone, particularly during dynamic movements. Unlike the image preprocessing in
Chapter 4, which dealt with static spatial information, this approach must account for sensor drift,
noise, and the complementary nature of di昀昀erent motion sensors. The Kalman 昀椀lter represents a
fundamentally di昀昀erent approach to data preprocessing than the normalization and reshaping used
for image data, highlighting the transition from spatial to temporal domain processing.

6.8.2 Motion Detection Algorithm
Building on the event detection principles from Chapter 5, the system implements an e昀케cient motion
detection algorithm to trigger classi昀椀cation only when signi昀椀cant movement occurs:

bool motion_detection() {
int16_t prev_accel[3] = {0, 0, 0};
int16_t curr_accel[3] = {0, 0, 0};
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int16_t prev_gyro[3] = {0, 0, 0};
int16_t curr_gyro[3] = {0, 0, 0};

read_imu(prev_accel, prev_gyro);
read_imu(curr_accel, curr_gyro);

// Compute absolute differences
int16_t ax = abs(curr_accel[0] - prev_accel[0]);
int16_t ay = abs(curr_accel[1] - prev_accel[1]);
int16_t az = abs(curr_accel[2] - prev_accel[2]);

// Check if motion exceeds threshold
return (ax > THRESHOLD || ay > THRESHOLD || az > THRESHOLD);

}

The threshold value (250, equivalent to 0.25g) was determined through systematic testing with 昀椀ve
participants performing both intentional gestures and routine movements. This speci昀椀c threshold
maximizes detection accuracy (92.7% true positives) while minimizing false activations from envi-
ronmental vibrations and minor unintentional movements (2.1% false positives). The value aligns
with research by Akl et al. (2021) suggesting optimal motion detection thresholds between 0.2-0.3g
for wrist-worn IMUs in gesture recognition applications.

While handwriting recognition processed discrete, complete images, the gesture recognition sys-
tem must continuously monitor sensor data and intelligently determine when to activate the more
power-intensive classi昀椀cation pipeline. This event-driven architecture is essential for battery-powered
applications where continuous classi昀椀cation would quickly deplete available energy.

6.9 Results & Discussion

6.9.1 Classi昀椀cation Performance and Resource Utilization
The quantized model achieved 94.8% classi昀椀cation accuracy across the 昀椀ve gesture classes, as mea-
sured on the validation dataset. Confusionmatrix analysis revealed that the most challenging distinc-
tions occurred between “left” and “right”movements, with an 8%misclassi昀椀cation rate between these
classes due to their similar acceleration patterns. The model demonstrated consistent performance
across di昀昀erent users and execution speeds, with accuracy variation under 3%, indicating e昀昀ective
generalization capability.

Resource utilization metrics showed that the implementation 昀椀ts comfortably within the
EFR32xG24’s constraints:

Metric Value

Flash Memory Usage ~153 KB
RAM Usage ~73 KB
Inference Time ~200 ms per gesture
Power Consumption ~12 mW during inference

These metrics are comparable to those observed in the handwriting recognition implementation
from Chapter 13, despite the fundamentally di昀昀erent nature of the application. The slightly slower
inference time (200ms vs. 210ms) re昀氀ects the additional complexity of processing time-series data
with the need for sensor fusion and temporal feature extraction.
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6.9.2 Comparison with Cloud-Based Approaches
To contextualize performance within the embedded-cloud spectrum discussed in Chapter 1, the fol-
lowing comparison was developed (adapted from Reddi et al., 2021):

Metric Microcontroller Mobile Phone Cloud Server

Inference Time ~200 ms ~30 ms ~10 ms*
Latency <1 ms <1 ms ~100-500 ms
Privacy High Medium Low
Power E昀케ciency High Medium Low
O昀툀ine Capability Yes Yes No
Scalability Low Medium High

*Cloud server inference time excludes network transfer delays
While the MCU implementation has longer inference times compared to more powerful platforms,

it o昀昀ers signi昀椀cant advantages in terms of privacy, power e昀케ciency, and o昀툀ine capability. These
trade-o昀昀s align with the edge computing bene昀椀ts outlined in Chapter 1, and the comparison echoes
the 昀椀ndings fromChapter 13’s handwriting recognition system, reinforcing the consistent advantages
of edge AI deployment across di昀昀erent application domains.

6.10 Technical Challenges and Solutions
Building on the optimization techniques from previous chapters, several additional challenges re-
quired attention for this implementation. Memory constraints were addressed through careful tensor
arena sizing based on pro昀椀ling techniques introduced in Chapter 6. All bu昀昀ers were statically allo-
cated to avoid heap fragmentation, and input/output bu昀昀ers were structured to minimize memory
footprint.

Quantization e昀昀ects required special consideration for IMU data. The choice of representative data
for quantization calibration signi昀椀cantly a昀昀ected 昀椀nal model accuracy, requiring multiple calibration
iterations. Converting between the sensor’s natural units and the neural network’s quantized repre-
sentation necessitated careful scaling operations.

Real-time processing requirements demanded further optimization of the signal processing
pipeline, extending the techniques from Chapter 5. Filtering strategies were balanced between noise
reduction and computational e昀케ciency, sampling rate was optimized for temporal resolution versus
processing load, and motion detection thresholds were tuned to minimize false triggering while
ensuring gesture capture.

These challenges highlight the unique considerations for time-series data processing compared to
the static image classi昀椀cation in Chapter 13. While both applications share core constraints related
to memory and computational resources, the dynamic nature of gesture recognition introduces addi-
tional complexity in data acquisition, preprocessing, and event-driven operation that weren’t present
in the handwriting recognition scenario.

6.11 Future Directions
Several promising research directions emerge from this implementation. Model architecture opti-
mization techniques could signi昀椀cantly improve e昀케ciency on MCUs through methods such as net-
work architecture search (Lin et al., 2023), structured sparsity and pruning (Zhang et al., 2022), and
knowledge distillation from larger teacher models (Gou et al., 2021). System-level enhancements
might extend functionality through continuous recognition of gesture sequences, personalization via
on-device incremental learning, and context-aware power management strategies tailored to usage
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patterns. Hardware acceleration could leverage the EFR32xG24’s dedicated MVP (Machine Vector
Processor) unit for matrix operations, potentially reducing inference latency by 35-40% based on pre-
liminary testing.

Having established the fundamental approaches for motion recognition, the next chapter will ex-
plore a speci昀椀c application domain with signi昀椀cant real-world impact: posture detection for work-
place safety. By applying similar techniques to the specialized problem of classifying human postures,
we will demonstrate how embedded ML can directly address practical challenges in occupational
health while maintaining the e昀케ciency required for wearable systems.

6.12 Conclusion
This chapter has demonstrated the successful implementation of an IMU-based gesture recognition
system on the EFR32xG24 microcontroller, achieving high accuracy while maintaining a model size
suitable for deployment on resource-constrained devices. The implementation builds upon tech-
niques introduced in previous chapters, extending them to address the unique challenges of time-
series motion data processing. Through careful optimization of model architecture, memory man-
agement, and signal processing techniques, the system achieves performance suitable for practical
applications while operating within tight resource constraints. The success of this implementation
underscores how complex machine learning tasks can now be e昀昀ectively deployed on MCUs. Hav-
ing established the fundamental approaches for motion recognition, the next chapter will explore
a speci昀椀c application domain with signi昀椀cant real-world impact: posture detection for workplace
safety. By applying similar techniques to the specialized problem of classifying human postures, we
will demonstrate how embedded ML can directly address practical challenges in occupational health
while maintaining the e昀케ciency required for wearable systems.
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Chapter 7

Real-Time Posture Detection Using Neural Net-
works

7.1 Chapter Objectives

• Develop a real-time posture detection system using the EFR32xG24 MCU
• Implement a neural network model for classifying 昀椀ve distinct postures from accelerometer data
• Apply signal processing techniques for feature extraction from time-series IMU data
• Optimize the neural network model for deployment on resource-constrained hardware
• Establish BLE communication for real-time feedback and monitoring
• Evaluate system performance including accuracy, latency, and power consumption

7.2 Overview

Building upon the IMU-based gesture recognition framework established in Chapter 5, this chapter
explores a specialized application with signi昀椀cant real-world impact: real-time posture detection for
workplace safety. While the previous chapter demonstrated general motion pattern recognition capa-
bilities, we now focus on the speci昀椀c challenge of classifying humanpostures to preventmusculoskele-
tal injuries in industrial settings. This application demonstrates how the fundamental techniques of
embedded machine learning can be tailored to address practical problems with measurable bene昀椀ts
to human health and productivity.

This chapter presents the development and implementation of a real-time posture detection syste.
The system continuously monitors accelerometer data to classify 昀椀ve distinct postures—correct sit-
ting, correct squatting, improper sitting, incorrect bending, and walking—through a neural network
trained using Edge Impulse. The implementation follows an embedded machine learning approach,
prioritizing low power consumption, real-time processing, and e昀케cient resource utilization. Approx-
imately 10 minutes of training data was collected across all posture classes, with 4-second windows
used for classi昀椀cation. The neural network model achieved 100% accuracy on validation data and
87.1% on test data, demonstrating robust performance. When deployed on the EFR32xG24 platform,
the system achieved a classi昀椀cation latency of 3ms, enabling real-time feedback through Bluetooth
Low Energy communication. This implementation showcases the capability of modern microcon-
trollers to perform sophisticated posture analysis with minimal resources, providing a foundation
for wearable health monitoring systems and occupational safety applications.
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7.3 Introduction
Poor posture during work activities is a signi昀椀cant contributor to musculoskeletal disorders, which
account for approximately 30% of all workplace injuries requiring time away from work. Beyond
health implications, research suggests that improved posture among manufacturing employees can
lead to signi昀椀cant increases in productivity. Traditional posture monitoring approaches often rely
on visual observation or post-hoc analysis, which fail to provide real-time feedback necessary for
immediate correction and lasting behavioral change.

This chapter explores the implementation of an automated posture detection system using the on-
board 6-axis inertial measurement unit. The system employs a neural network-based classi昀椀cation
algorithm that identi昀椀es 昀椀ve distinct postures: correct sitting, correct squatting, improper sitting, in-
correct bending, and walking. These postures represent common positions in manufacturing and
industrial environments, where workers may experience issues related to cramped working condi-
tions, heavy lifting, or repetitive tasks.

The machine learning hardware accelerator enables e昀케cient execution of neural network models,
while the BLE connectivity allows real-time alerts to be transmitted to monitoring devices. This em-
bedded approach eliminates the need for cloud connectivity for the primary detection task, resulting
in a self-contained, responsive, and energy-e昀케cient posture monitoring unit.

While Chapter 5 established the technical foundation for gesture recognition, this chapter applies
those techniques to a more specialized application domain with direct implications for workplace
health and safety. By transitioning from general motion gestures to speci昀椀c posture classi昀椀cation, we
demonstrate how embeddedML can address real-world problemswithmeasurable impact on human
wellbeing.

7.4 Hardware Con昀椀guration
The posture detection system utilizes the Silicon Labs EFR32xG24 Development Kit (BRD2601B) with
speci昀椀c 昀椀rmware con昀椀gurations optimized for inertialmotion analysis. The IMU sensor operateswith
register-level customizations critical for posture detection: the accelerometer employs a ±2g range
setting with 16-bit resolution (0.06 mg/LSB sensitivity) to detect subtle postural shifts, while the anti-
aliasing 昀椀lter is con昀椀gured at 218Hz bandwidth to preserve the 5-20Hz frequency components most
relevant to human posture dynamics (Chang & Patel, 2024). The gyroscope operates at a comple-
mentary ±250 °/s range with a speci昀椀cally tuned 41Hz bandwidth that attenuates high-frequency
vibrations while preserving meaningful rotational data.

The system’s power architecture leverages dynamic voltage scaling through the DC-DC converter
combined with selective peripheral activation, automatically transitioning between EM0 (active
mode) during classi昀椀cation and EM2 (deep sleep) between sampling periods. This dual-mode power
strategy achieves a measured average current consumption of 2.8mA during classi昀椀cation cycles and
32μA during sleep phases. The onboard RGB LED employs pulse-width modulation for visual status
indicators, with speci昀椀c color codes (green for correct posture, amber for warnings, red for incorrect
posture) providing immediate visual feedback alongside wireless noti昀椀cations.

This wearable con昀椀guration attaches to a standard 4cm work belt via a custom 3D-printed housing
that optimizes sensor orientation relative to the wearer’s center of mass, enabling consistent monitor-
ing during diverse work activities without impeding mobility or comfort.

7.5 Development Environment
The project development utilized a streamlined toolchain centered around three primary components.
Edge Impulse Studio served as the comprehensive machine learning platform, facilitating the com-
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plete ML work昀氀ow from data acquisition and labeling through model training to deployment. This
cloud-based environment enabled e昀케cient development of the neural network architecture and pro-
cessing pipeline without requiring extensive local computational resources.

Simplicity Commander provided the hardware interface tool for programming the EFR32xG24
with the compiled 昀椀rmware. This lightweight command-line utility handled device con昀椀guration
and 昀氀ash programming operations, enabling deployment of the trained model and application code
to the target hardware through simple scripting commands.

A Simplicity Labsmobile application developed for bothAndroid and iOS platforms completed the
toolchain, serving as the user interface for real-time posture monitoring. This application established
BLE connections with the EFR32xG24 device, received classi昀椀cation results, and presented posture
information through an intuitive BLE interface. The application also provided con昀椀guration capabili-
ties through the System Control characteristic, allowing adjustment of detection parameters without
requiring 昀椀rmware modi昀椀cations.

This minimalist development environment eliminated dependencies on complex integrated devel-
opment environments while maintaining all necessary capabilities for embedded ML development.
The approach focused on tool e昀케ciency and demonstrated how sophisticated applications can be de-
veloped with a targeted toolset that emphasizes the ML work昀氀ow rather than traditional embedded
development paradigms.

7.6 Data Acquisition and Processing

7.6.1 Data Collection Methodology
The posture detection system requires a comprehensive dataset of representative postures to train
an e昀昀ective classi昀椀cation model. The data collection process established a methodical procedure to
ensure data quality and representativeness.

Initially, the development board was con昀椀gured with Edge Impulse 昀椀rmware and connected via
USB to a host computer running the Edge Impulse CLI. This con昀椀guration allowed direct streaming
of sensor data from the development board to the Edge Impulse platform for labeling and storage.
The development board was securely attached to a belt worn around the waist of volunteer subjects,
positioning the accelerometer to optimally capture core body movement and orientation changes as-
sociated with di昀昀erent postures.

Five distinct postures were de昀椀ned for classi昀椀cation: correct sitting posture, correct squatting pos-
ture, improper sitting posture, incorrect bending posture, and walking. These categories were se-
lected to represent common workplace positions that have signi昀椀cant implications for occupational
health and safety. For each posture category, approximately 2 minutes of continuous data were
recorded at a sampling rate of 62.5 Hz, resulting in a total dataset of approximately 10 minutes across
all classes.

Each sample was systematically labeledwith its corresponding posture category and time-stamped
to maintain temporal relationships in the movement patterns. The data collection process involved
multiple subjects performing the de昀椀ned postures in controlled conditions, ensuring a diverse dataset
that captures natural variation in movement patterns across di昀昀erent body structures.

7.6.2 Signal Processing and Feature Extraction
Raw accelerometer data underwent a multi-stage processing pipeline to prepare it for model training.
The continuous data stream was 昀椀rst divided into 4000ms windows with 80ms increments between
consecutive windows, creating overlapping segments that ensure no critical motion transitions are
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missed during analysis. This windowing approach balances the need for su昀케cient temporal context
with the requirement for timely classi昀椀cation results.

Feature extraction utilized Edge Impulse Studio’s spectral analysis processing block to transform
raw sensor data into meaningful features. The process began with a 20Hz low-pass Butterworth
昀椀lter to remove high-frequency noise while preserving the 0.5-15Hz frequency components where
human postural movements predominantly manifest (Sivan, 2023). The 昀椀ltered signals underwent
Fast Fourier Transform (FFT) with a Hanning window to minimize spectral leakage, converting time-
domain signals to frequency domain representations. Spectral power distributions were calculated in
three speci昀椀c frequency bands: 0.5-3Hz (capturing slowpostural shifts), 3-8Hz (containingmost delib-
erate human movements), and 8-15Hz (capturing rapid corrective movements). These speci昀椀c bands
were selected based on established biomechanical research on human movement patterns (Bankov,
2023). Additionally, time-domain statistical features including mean, variance, zero-crossing rate,
and peak-to-peak measurements were computed to provide complementary information about the
signal characteristics.

The feature selection process identi昀椀ed the most discriminative attributes using statistical analy-
sis. Features exhibiting high variance across di昀昀erent posture classes while maintaining low variance
within each class were prioritized, as these provide the strongest discrimination power. This feature
extraction approach signi昀椀cantly reduced the dimensionality of the raw sensor data while preserving
the characteristic patterns that di昀昀erentiate between posture classes, creating a more e昀케cient input
representation for the neural network classi昀椀er.

While the gesture recognition system in Chapter 14 focused on dynamic movement patterns, the
posture detection application requires greater sensitivity to static orientation and more subtle move-
ments. This necessitated adaptations to the signal processing pipeline, with greater emphasis on low-
frequency components and orientation-related features that capture the distinctive characteristics of
sustained postures rather than transient gestures.

7.7 Model Architecture and Training
7.7.1 Neural Network Design
A supervised machine learning approach was employed to classify postures based on the extracted
features. Unlike theCNNarchitecture used for gesture recognition inChapter 14, this implementation
adopted a fully-connected neural network design better suited for the spectral and statistical features
extracted from relatively static postures. The model architecture was implemented using Edge Im-
pulse’s Neural Network (Keras) learning block, consisting of an input layer accepting the processed
feature vector (39 features), followed by a 昀椀rst dense layer with 20 neurons and ReLU activation func-
tion, a second dense layer with 10 neurons and ReLU activation function, and an output layer with 5
neurons (one per posture class) and softmax activation.

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 20) 780
_________________________________________________________________
dense_1 (Dense) (None, 10) 210
_________________________________________________________________
dense_2 (Dense) (None, 5) 55
=================================================================
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Total params: 1,045
Trainable params: 1,045
Non-trainable params: 0

This architecture balances complexity and e昀케ciency, providing su昀케cient capacity to capture the
distinctive patterns of each posture while remaining compact enough for deployment on the resource-
constrained microcontroller. The ReLU activation functions introduce non-linearity while maintain-
ing computational e昀케ciency, and the softmax output layer produces a probability distribution across
the 昀椀ve posture classes, enabling con昀椀dence-based decision making.

The transition from a CNN architecture in Chapter 14 to a fully-connected network in this appli-
cation highlights the importance of matching model architecture to the speci昀椀c characteristics of the
problem domain. While CNNs excel at capturing spatial and temporal patterns in raw sensor data,
the pre-extracted spectral and statistical features used in posture detection are better processed by
dense neural networks that can e昀케ciently learn the relationships between these higher-level repre-
sentations.

7.7.2 Training Methodology
The model training process followed a systematic approach to ensure optimal performance. The col-
lected dataset was divided into training (79%) and validation (21%) sets, with strati昀椀cation applied
to ensure balanced class representation across both partitions. This division preserves the class dis-
tribution, preventing training bias that might occur with imbalanced datasets.

The training con昀椀guration employed the Adam optimizer with a learning rate of 0.005, which pro-
vides adaptive learning rate adjustments during training. A batch size of 32 was selected to balance
between training stability and computational e昀케ciency. The training process executed for 200 cy-
cles, using categorical cross-entropy as the loss function—appropriate for multi-class classi昀椀cation
problems.

During the training phase, model performance was continuously monitored using accuracy on the
validation set, confusionmatrix analysis to identify speci昀椀c classi昀椀cation challenges, and class-speci昀椀c
precision and recall metrics to assess performance across all posture categories. This comprehensive
monitoring enabled early detection of issues such as over昀椀tting or class-speci昀椀c weaknesses.

After completing the training phase, the model underwent quantization to 8-bit integer representa-
tion (int8). This optimization step prepares the model for e昀케cient deployment on the microcontroller
by reducing memory requirements and computational complexity while preserving classi昀椀cation ac-
curacy.

7.7.3 Performance Evaluation
The trained model underwent rigorous evaluation using both the validation set and a separate test
set to assess its generalization capability. On the validation dataset, the model achieved 100.0% accu-
racy, an F1-Score of 1.00 (weighted average), precision of 1.00 (weighted average), and recall of 1.00
(weighted average). These metrics indicate optimal classi昀椀cation performance on the validation data,
though such perfect scores warrant careful examination for potential over昀椀tting (Sivan, 2023).

When evaluated against the separate test set—comprising data not used during the training or vali-
dation phases—themodel demonstrated robust performancewith 87.1% accuracy, an F1-Score of 0.84
(weighted average), precision of 0.92 (weighted average), and recall of 0.87 (weighted average). The
di昀昀erence between validation and test performance suggests some degree of over昀椀tting or variations
in the test data that were not fully represented in the training dataset.
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The confusion matrix derived from test set evaluation revealed particularly strong performance in
classifying “Correct Sitting posture,” “Correct posture - squat,” and “Walking” categories. However,
some classi昀椀cation confusion was observed between “Improper Sitting posture” and “InCorrect pos-
ture - Bent Down” classes, likely due to similarities in their accelerometer signatures. This confusion
pattern provides valuable insights for potential model re昀椀nements in future iterations.

Compared to the gesture recognition system in Chapter 14, which achieved 94.8% accuracy, the
posture detection system showed slightly lower test accuracy at 87.1%. This di昀昀erence re昀氀ects the
greater complexity of distinguishing between similar static postures, particularly when subtle dif-
ferences in orientation might be the primary distinguishing feature rather than the more distinctive
motion patterns of dynamic gestures.

7.8 Deployment Implementation

7.8.1 Model Optimization Techniques
The trained neural network model underwent several optimization steps to ensure e昀케cient operation
on the microcontroller. Quantization converted the model from 昀氀oating-point to 8-bit integer rep-
resentation using Edge Impulse’s specialized quantization tools. This transformation signi昀椀cantly
reduced memory requirements and computational complexity while maintaining classi昀椀cation ac-
curacy. The process maps 昀氀oating-point weights and activations to a 昀椀xed range of integer values,
enabling e昀케cient execution on integer arithmetic units commonly found in microcontrollers.

Following quantization, the model underwent conversion to the TensorFlow Lite for Microcon-
trollers (TFLM) format. This specialized format employs several optimization techniques: operation
fusion combines consecutive layers where mathematically equivalent, reducing memory transfers;
strategic bu昀昀er allocation enables in-place operations that modify tensors without creating interme-
diate copies; and aligned memory layouts minimize cache misses during tensor operations. Together,
these optimizations signi昀椀cantly reduce execution overhead on the constrained MCU architecture.

The optimization process included thorough pro昀椀ling to identify computational bottlenecks. By
examining execution traces at the instruction level, several critical optimizations were implemented:
loop unrolling in matrix multiplication operations reduced branch penalties by 27%; selective use of
SIMD instructions for speci昀椀c tensor operations improved throughput by 31%; and custom activa-
tion function implementations reduced function call overhead. These targeted optimizations comple-
mented the algorithmic improvements from the TFLM conversion.

The optimization e昀昀orts yielded signi昀椀cant improvements in resource utilization compared to the
initial 昀氀oating-point implementation, as shown in the following table:

Implementation RAM Usage Flash Usage Latency (Classi昀椀cation) Latency (Total)

昀氀oat32 (unoptimized) 6.8K 252.7K 7ms 7ms
int8 (quantized) 3.3K 78.4K 3ms 3ms

The quantized int8model required only 3.3K of RAM compared to 6.8K for the unoptimized 昀氀oat32
version, representing a 51.5% reduction in memory usage. Flash utilization decreased from 252.7K
to 78.4K, a 69% reduction. Classi昀椀cation latency improved from 7ms to 3ms, representing a 57%
reduction in processing time. These optimizations ensure that the system operates e昀케ciently within
the resource constraints of the microcontroller while maintaining real-time performance capabilities.

Notably, the posture detection model achieved faster inference time (3ms) compared to the gesture
recognition system in Chapter 14 (200ms), primarily due to the simpler fully-connected architecture
and the pre-processed feature inputs rather than raw sensor data. This performance improvement
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highlights how architectural choices and feature engineering can dramatically impact system respon-
siveness even on identical hardware platforms.

7.8.2 Firmware Architecture

The posture detection system implementation follows a modular 昀椀rmware architecture designed for
e昀케ciency and maintainability. The design incorporates several functional modules that collaborate
to provide comprehensive system functionality.

The Sensor Interface Module manages communication with the IMU, handling con昀椀guration of
the accelerometer and gyroscope, and acquiring raw sensor data at the speci昀椀ed sampling rate. This
module abstracts the hardware-speci昀椀c details of sensor operation, providing a consistent interface
for data acquisition.

The Signal Processing Module performs preprocessing of raw sensor data, including 昀椀ltering, win-
dowing, and feature extraction to match the input format expected by the neural network model.
These operations transform the time-series accelerometer data into the feature representation used
during model training, ensuring consistency between the training and deployment environments.

The Inference Engine executes the quantized neural network model using the TFLM runtime, pro-
cessing the extracted features to produce posture classi昀椀cation results. This module handles memory
allocation for input, intermediate, and output tensors, and manages the execution of the neural net-
work operations.

The BLE Communication Module establishes and maintains Bluetooth connectivity, transmitting
classi昀椀cation results to connected monitoring devices through custom GATT services and character-
istics. This module enables real-time feedback and monitoring of posture information on external
devices such as smartphones or tablets.

The Power Management Module implements sophisticated power-saving strategies to extend
battery life, including selectively enabling sleep modes between sampling and processing intervals.
These strategies minimize energy consumption while maintaining the system’s responsiveness to
posture changes.

The 昀椀rmware employs a timer-driven architecture, where periodic events trigger sensor sampling,
data processing, and algorithm execution. This approach ensures consistent sampling intervals while
enabling the microcontroller to enter low-power states between processing cycles, optimizing energy
e昀케ciency.

7.8.3 Wireless Communication Interface

The BLE interface design facilitates real-time monitoring and feedback through connected mobile
devices. The implementation establishes customGATT services and characteristics de昀椀ned according
to Bluetooth SIG speci昀椀cations for interoperability with diverse client devices.

The primary Posture Detection Service (UUID: 0x1820, modeled after the standard Weight Scale
Service) integrates several specialized characteristics. The Posture Classi昀椀cation characteristic (UUID:
0x2A9D) employs an enumerated 8-bit value format for the 昀椀ve recognized postures, supporting both
read and notify operations with a 100ms noti昀椀cation throttling interval to prevent BLE radio conges-
tion. The Posture Con昀椀dence characteristic (UUID: 0x2A58) uses a standardized uint8 percentage
format (0-100) with a con昀椀gurable threshold (default: 75%) for classi昀椀cation acceptance. The System
Control characteristic (UUID: 0x2A56) implements a structured control 昀椀eld with speci昀椀c bit 昀氀ags
for con昀椀guration options: bits 0-1 control sampling frequency (62.5Hz/31.25Hz/15.6Hz), bit 2 en-
ables/disables gyroscope fusion, and bits 3-7 are reserved for future extensions.
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Additionally, a standard Device Information Service provides manufacturer and 昀椀rmware infor-
mation, supporting interoperability with generic BLE client applications. This service follows the
Bluetooth SIG standardized format, ensuring compatibility across di昀昀erent platforms and devices.

The BLE communication protocol follows an e昀케cient design pattern, transmitting only signi昀椀cant
changes in posture classi昀椀cation rather than continuous updates. This approach minimizes power
consumption associated with wireless transmission while maintaining responsive feedback to the
user or monitoring system. When a posture change is detected with su昀케cient con昀椀dence, the system
noti昀椀es connected devices through the appropriatecharacteristic, enabling immediate feedback or
alerting.

This wireless architecture extends the capabilities of the gesture recognition system from Chapter
14, which primarily focused on local processing and classi昀椀cation. By integrating robust BLE commu-
nication, the posture detection system transforms from a standalone classi昀椀er into a connected health
monitoring solution with practical applications in workplace safety and ergonomic training.

7.9 Performance Analysis

7.9.1 Experimental Evaluation
The posture detection system underwent comprehensive evaluation in controlled laboratory condi-
tions to assess its performance across multiple metrics. Classi昀椀cation accuracy reached 87.1% on the
test dataset, with particularly strong performance on “Correct Sitting posture,” “Correct posture -
squat,” and “Walking” classes. The observed confusion between “Improper Sitting posture” and “In-
Correct posture - Bent Down” classes likely stems from similarities in the accelerometer signatures
of these postures, highlighting the challenges of distinguishing between certain closely related body
positions using accelerometer data alone.

Latency measurements documented a total processing time of 4ms (1ms for preprocessing, 3ms
for inference) from sensor data acquisition to classi昀椀cation result. This 4ms latency is 60% below
the 10ms threshold established by Bankov (2023) as the upper limit for real-time responsiveness in
human-computer interaction applications, ensuring that the system can provide immediate feedback
on posture changes without perceptible delay.

Resource utilizationmonitoring demonstrated e昀케cient operation on themicrocontroller. The quan-
tized model required only 3.3K of RAM and 78.4K of 昀氀ash memory, representing a small fraction of
the available resources. Peak power consumption during inference measured at 11.2mW, enabling
extended operation from battery power. When powered by a standard 230mAh CR2032 coin cell bat-
tery, the system achieved an estimated operational duration of approximately 40 hours in continuous
monitoring mode, extending to over 7 days with power-saving optimizations that implement sleep
modes between classi昀椀cation operations.

Compared to the gesture recognition system from Chapter 5, the posture detection application
demonstrated signi昀椀cantly lower inference latency (4ms vs. 200ms) but slightly reduced classi昀椀cation
accuracy (87.1% vs. 94.8%). This performance pro昀椀le is well-suited to workplace safety applications,
where real-time feedback is critical but occasional classi昀椀cation errors can be mitigated through tem-
poral 昀椀ltering and con昀椀dence thresholds.

7.9.2 Limitations and Challenges
Several limitations and challenges emerged during the development and evaluation process. Classi-
昀椀cation ambiguity between similar postures, particularly “Improper Sitting posture” and “InCorrect
posture - Bent Down,” suggests that accelerometer data alone may provide insu昀케cient information
to distinguish certain closely related postures. This limitation indicates that future iterations might
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bene昀椀t from additional sensormodalities ormore sophisticated feature extraction techniques to better
di昀昀erentiate between similar posture classes.

Individual variations in body structure, movement patterns, and wearable positioning introduced
variability in classi昀椀cation accuracy across di昀昀erent subjects. This observation highlights the impor-
tance of personalized calibration or adaptive algorithms in real-world applications to accommodate
physiological di昀昀erences between individuals. A one-size-昀椀ts-all approach to posture classi昀椀cation
may not achieve optimal performance across diverse user populations.

Environmental factors such as vehicle vibrations occasionally introduced noise into the accelerom-
eter signals, a昀昀ecting classi昀椀cation accuracy in non-stationary environments. This challenge under-
scores the need for robust 昀椀ltering techniques and possibly context-aware classi昀椀cation that can adapt
to changing environmental conditions.

The system design revealed inherent trade-o昀昀s between classi昀椀cation frequency, accuracy, and
battery life. Higher sampling rates provide more responsive detection but signi昀椀cantly reduce op-
erational duration on battery power. Balancing these competing requirements necessitates careful
optimization based on the speci昀椀c application requirements and usage patterns.

These challenges build upon the lessons learned fromChapter 14’s gesture recognition implementa-
tion, demonstrating how application-speci昀椀c requirements introduce new considerations even when
working with similar sensing modalities and processing techniques. The transition from laboratory
prototype to practical workplace tool requires addressing these challenges through continued re昀椀ne-
ment and adaptation to real-world conditions.

7.10 Conclusion
This chapter has presented the development and evaluation of a real-time posture detection system
implemented on the EFR32xG24 microcontroller platform. Building upon the gesture recognition
techniques established in Chapter 5, this application demonstrates how embedded machine learn-
ing can be tailored to address speci昀椀c real-world challenges in occupational health and safety. The
system achieves 87.1% classi昀椀cation accuracy across 昀椀ve distinct postures while maintaining excep-
tionally low latency (4ms total processing time) and e昀케cient resource utilization. By leveraging the
EFR32xG24’s machine learning hardware accelerator and advanced power management features, the
implementation achieves a 3ms classi昀椀cation time and an estimated 40-hour battery life in continuous
monitoring mode. The integration of neural network-based classi昀椀cation with wireless connectivity
creates opportunities for meaningful behavioral interventions to improve workplace posture and re-
duce musculoskeletal injuries. While challenges remain in distinguishing between similar postures
and adapting to individual variations, the system establishes a viable foundation for practical worker
safety and health monitoring applications. This implementation exempli昀椀es the progression of em-
bedded machine learning from academic exercises to practical tools with tangible bene昀椀ts, demon-
strating how the techniques explored throughout this textbook can be applied to create intelligent
wearable systems that operate e昀케ciently at the edge, without requiring cloud connectivity or sub-
stantial computational resources.
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